
 
Figure. 1. The robot grasps a cylindrical object. 
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Abstract—In our daily life, there are many objects 

represented by cylindrical shapes and ellipsoids.  The tops of 

these objects are formed by elliptic shape primitives. Thus, it is 

available for a robot to manipulate these objects by ellipse 

detection. In this work, we propose a novel approach to 

generating ground truth for training the model based on 

domain randomization. Using synthetic data generated in this 

manner, we build an end-to-end deep neural network with a 

detection backbone and then,  combine multiple branches 

archived from the backbone for sharing the multiple-scale 

features; further, after employing active rotation filters, the 

features pass through the region proposal net to form the 

prediction branches of the box, orientation regression, and 

object classification; finally, these branches are fused to do 

ellipse detection, allowing robotic manipulations of cylinders 

and ellipsoids. To demonstrate the capabilities of the proposed 

detector, we show the comparison results with the state-of-the-

art detector on synthetic and public datasets. The proposed 

model for ellipse detection and data generation pipeline based 

on domain randomization in a simulation are evaluated by a 

series of robotic manipulations implemented in real application 

scenarios. The results illustrate a high success rate on real-

world grasp attempts despite having only been trained on a 

synthetic dataset. (A video of some robotic experiments is 

available on YouTube:  https://youtu.be/Ueg1XSI2S98 ) 

Index Terms—Ellipse detection, Robotic grasp, Domain 

randomization. 

I. INTRODUCTION  

UOTOMATING industrial tasks, such as picking, 

binning, or assembly, the visual perception for robotic 

manipulation is essential [1-3].  It is well known that a large 

number of objects in households and industries have 

surfaces with elliptic geometric primitives. Therefore, the 

tops of cylindrical objects and the outlines of ellipsoid 

objects are represented by ellipses in the 2-dimensional(2D) 

images at most angles of observation, such as cans, cups, 

oranges and so on. Employing the detection of elliptic 

primitives, a robot can do static [4] and dynamic [2] 

manipulations of cylindrical objects. 

     The detection of ellipse-like shapes has been widely 

applied in various computer vision tasks, such as industrial 

 

 
 

inspection, medical diagnosis, recognition of traffic signs, 

tracking targets [5-8]. There exist a large number of ellipse 

detection works that are amenable to voting-based 

algorithms, algebraic analysis and geometric analysis of the 

properties of ellipses [2, 9]. Voting-based strategy includes 

methods [10, 11] that have reduced the dimensionality via 

voting in Hough Transform (HT) space [12, 13]. In terms of 

the algebraic approaches,  a least-squares optimization 

problem [14] and random sample consensus [15] are in 

general applied to solving the ellipse fitting problem. 

Notably, the performances of these methods are more 

computationally efficient than HT-based approaches. 

Although the above methods have good performances in 

noisy images, they always generate many false positives for 

detecting multiple ellipses, which limits their applications in 

real environments. The second class contains the methods 

that employ geometric criteria to group arc segments with a 

high probability of belonging to the same ellipse [16]. In 

addition, some methods [2, 9, 13] utilized short straight lines 

to approximate arc segments for estimating elliptic 

parameters, which achieves a real-time faster and more 

accurate detection comparable with ones belonging to the 

first class. However, the above traditional ellipse-detection 

approaches highly rely on segmentation and grouping, which 

results in failure detections, especially in occluded and 

cluttered environments [17, 18], such as fruit detection and 

facial detection.  

    While some learning-based perception methods have been 

presented, the generalization of these models prevents them 

from being widely and easily applicable, specifically in 

robot-involved scenarios. The main challenge for the 

learning-based perception method used in real scenarios is 

data availability since labeling large amounts of training data 
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Figure. 2. The extraction of points corresponding to ellipses in the 3D 

space. The 3D models (A) and point clouds (B) of some cylindrical 

objects; The ellipse point sets extracted(C) and the combination 

visualization of 3D point clouds and ellipse point sets(D).  

 
Figure. 3. The sketches of calculating the intersections of a line and an 

ellipse for extracting the point set consisting of an ellipse(A) and 

obtaining the bounding box covering the ellipse target(B).  

𝑎, 𝑏, 𝛿, 𝑐𝑥, 𝑐𝑦  are the parameters determining an ellipse. 𝑘  denotes a 

slope of a line. (𝑥1, 𝑦1) and (𝑥2, 𝑦2) represent the intersections of the 

line and ellipse. 𝑡  is the parameterized angle for the parameterized 

ellipse function. 𝛿 indicates the orientation angle of an ellipse. 𝜃 is the 

orientation angle of the line. 

 

 

A B C D

A B

is generally time-consuming and needs expensive labor in 

the physical world. Recently some methods consider 

simulation as a tool to generate datasets for training models 

which are transferred successfully to the real world, bridging 

the simulation to the reality gap [19-23].  

Herein, the goal of this work is to propose a network 

architecture of ellipse detection for accurately representing 

the elliptical objects for successfully inferring the whole 

information of each cylindrical or ellipsoid object for 

enabling a robot to manipulate such objects in real scenarios; 

see Fig. 1 for an example. In this work, the first step toward 

the goal of enabling a robot to grasp cylinders and ellipsoids 

by the ellipse detection is to improve the accuracy of the 

ellipse detection pipeline. Moreover, we investigate how to 

address the reality gap by creating the synthetic dataset 

based on domain randomization for sim-to-real transfer of 

cylinder and ellipsoid detection to realize robotic 

manipulation behaviors. Our main contributions are 

threefold and thus: 

• An end-to-end one-stage model that detects cylinders 

and ellipsoids parameterized as ellipses is constructed.  

In particular, we first extract original features from the 

input image at three branches for the detection of 

objects with basic geometric primitives through the 

one-stage backbone [24], then combine multiple 

branches for sharing different-level features. Next, the 

features pass through the region proposal net after 

employing active rotation filters.  Finally, the box 

regression, orientation regression and classification 

branches are fused to generate object detections.  

• For better handling model training, we propose a 

pipeline of building synthetic datasets with labeled 

ellipses via the randomization domain. This method 

automatically samples transferred labels of ellipses by 

the constructed mathematical model for bridging the 

domain gap between the simulation and real scenarios. 

Allowing for domain randomization [19], we expose 

the 3D models of the cylindrical objects into various 

scenarios by Blenderproc [25] for extracting the ellipse 

ground truth. When the variability in simulation is 

significant enough, the proposed model will be 

generalized to the practical grasping environments.  

• The perception strategy based on ellipse detection is 

implemented on an industrial robot for achieving a 

series of manipulations of cylindrical and ellipsoid 

objects in real scenarios, obtaining highly successful 

rates of grasp experiments. 

We organize the rest of this paper as follows. The 

proposed model is described in detail in Section II. Section 

III investigates its performance by comparing it with a recent 

ellipse detector. Section IV provides demonstrations of 

robotic manipulations of cylindrical and ellipsoid objects. 

We conclude in Section V. 

II. METHODOLOGY  

This section consists of three main blocks, namely, data 

preparation by domain randomization, network architecture 

construction.  

A. Data Preparation by Domain Randomization 

We present a novel approach to preparing a synthetic 

dataset including images with ellipses for training the 

proposed detector. Domain randomization technology is 

applied to providing enough simulated variability for 

bringing the gap from simulations to real scenarios. Here we 

create training images including cylindrical objects placed in 

scenarios and the air.  

We render images using Blenderproc’s built-in renderer 

by the two following methods. First, the object images are 

put in scenarios with textures that are chosen uniformly from 

3D texture open libraries. Second, the images are randomly 

collected from the COCO dataset as the backgrounds of the 

object images in the air are composited to generate images. 

Moreover, we sample the tops of cylindrical or ellipsoid 

objects (such as apples and oranges) that are uniformly 

placed in scenarios and the air at random.  

Here we present an approach to employing 3D point-

cloud models of cylindrical objects to construct a synthetic 

dataset including images with ellipses. First, we extract the 

points consisting of ellipses that are the top outlines of 

cylinders after obtaining the 3D point-cloud models of 

cylinders (see Fig.3). In particular, an ellipse can be 

described by the following equation, 

[(𝑥−𝑐𝑥) cos 𝛿+(𝑦−𝑐𝑦) sin 𝛿]
2

𝑎2 +
[(𝑥−𝑐𝑥) sin 𝛿−(𝑦−𝑐𝑦) cos 𝛿]

2

𝑏2 = 1    (1) 



 
Figure. 4.  The procedures of generating the ellipse ground truth with virtual 3D scenes(A, B, C) and real backgrounds(D, E, F).  The point sets in red 

projected from 3D space(A and D); the ellipses in green fit from the point sets(B and E); the bounding boxes in blue covering the ellipses(C and F).  

 
Figure. 5. The overview of the proposed detection model. The gray blocks enclosed by a frame represent the backbone and the yellow blocks enclosed 

by a frame denote the feature pyramid network.  
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             𝑦 − 𝑐𝑦 = 𝑘(𝑥 − 𝑐𝑥) with 𝑘 = tan 𝜃                  (2) 

where (𝑥, 𝑦) denotes the coordinate of a point on the ellipse; 

𝑎, 𝑏, 𝛿, 𝑐𝑥, 𝑐𝑦   represent the semi-major, semi-minor axes, 

ellipse orientation angle, and the center coordinates, 

respectively. By combining Eq. (1) and Eq. (2), we can 

obtain the coordinates of the intersection points provided as 

  𝑥1,2 = 𝑐𝑥 ±
𝑎𝑏

√𝑏2(cos 𝛿+𝑘 sin 𝛿)2+𝑎2(sin 𝛿−𝑘 cos 𝛿)2
            (3) 

  𝑦1,2 − 𝑐𝑦 = 𝑘(𝑥1,2 − 𝑐𝑥)                           (4) 

in which (𝑥1, 𝑦1) and (𝑥2, 𝑦2) denote the two coordinates of 

the intersection points, as shown in Fig. 2(A). Furthermore, 

by changing the ellipse orientation angle 𝜃 , we can achieve 

a series of intersection points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) consisting 

of an ellipse, as shown in Fig. 2(C,D). Second, Blenderproc 

[25] is applied to rendering 3D models of objects to 

scenarios and generating 6D poses of objects. Third, we 

project the above intersection points of the object’s point 

cloud from the 3D space to an image, via the 6D pose 

information provided by Blenderproc. The pinhole camera 

model is used for formulating this projection relationship. 

Fourth, the point sets in the 2D space projected from the 3D 

space are fit to an ellipse due to the geometric invariance of 

an ellipse, as illustrated in Fig. 4 (A, B, D, E).  Finally, we 

need to determine the bounding box of the target ellipse for 

training. Equation (1) can be re-written as the parameterized 

equation, 

   𝑥 − 𝑐𝑥 = 𝑎 cos 𝑡 cos 𝛿 − 𝑏 sin 𝑡 sin 𝛿 

𝑦 − 𝑐𝑦 = 𝑎 cos 𝑡 sin 𝛿 + 𝑏 sin 𝑡 cos 𝛿             (5) 

Thus, we have 

 
𝜕𝑥

𝜕𝑡
= −𝑎 sin 𝑡 cos 𝛿 − 𝑏 cos 𝑡 sin 𝛿 

𝜕𝑦

𝜕𝑡
= −𝑎 sin 𝑡 sin 𝛿 + 𝑏 cos 𝑡 cos 𝛿                (6) 

When  
𝜕𝑥

𝜕𝑡
= 0 and 

𝜕𝑦

𝜕𝑡
= 0, we can obtain 

𝑡 = 𝑛𝜋 + tan−1 (−
𝑏

𝑎
tan 𝛿) , 𝑛 = 0,1 

𝑡 = 𝑛𝜋 + tan−1 (
𝑏

𝑎
cot 𝛿) , 𝑛 = 0,1              (7) 

Substituting Eq. (7) into Eq. (5), we achieve the minimal 

and maximum values on the 𝑥 -axis and 𝑦 -axis, 

respectively, as shown in Fig. 3(B).  

B. Construction of the learning model 

1) Network Architecture 

Figure 5 illustrates the proposed network that is made up 

of two sections including the backbone network 

ResNet101[26] and the designed output network for 

detecting ellipses.  The backbone network takes charge of 

extracting the image features as the input to three branches 

aiming to complete three tasks.  

We get the three feature maps generated by the backbone-

ResNet101 feedforward network. In terms of the designed 

network, we achieve three-level resolution features for 

realizing multiple-scale object detection by combing the low, 

middle, and high output feature maps through the backbone. 

Since these feature maps are not of the same resolution, we 

need to normalize the feature maps before integrating them, 

such as up-sampling, undergoing 1 × 1  and 3 ×
3convolutional layers.  During this stage, we still output 

three feature maps rather than one feature map sharing 

classification and regression to consist of a feature pyramid 

network[27] for generating more complementary semantic 

information. 

The ARF-RPN regression [28, 29] is used for generating 

high-quality rotated region proposals. Different from 

standard CNN features, the oriented region proposal network, 

which consists of orientated response layers and the 

followed RPN and orientation pooling to generate rotation-

invariant features, is proposed to achieve detection 

candidates with the orientations. Active rotation filters 

(ARF)[28] are applied to constructing orientated response 

layers for encoding the orientation information. An ARF is 



TABLE I. Comparison results for four datasets, PD, P, R, T represent 

the public dataset. Precision, recall and time, respectively.  

        Methods F-measure P R T(ms) 

PD     Dong’s 0.63 0.78 0.52 20 

  Ours 0.73 0.80 0.67 18 

 

 
Figure. 6. Examples of ellipse detection in the combined public 

dataset. Green ellipses indicate ground truth. Dong’s detector results 

are represented by blue ellipses. The detected results based on the 

proposed detector are visualized by red ellipses. 
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represented by a feature map with a canonical filter and its 

rotated clones, being a 𝑘 × 𝑘 × 𝑁 filter, where 𝑘 denotes the 

kernel size and 𝑁 represents the number of rotations.  We 

employ ARF to the input 𝑋(𝑛) to produce the output 𝑌𝑖 the 

following equation,  

𝑌𝑖 = ∑ 𝐹𝜃𝑖
(𝑛) ∙ 𝑋(𝑛), 𝜃𝑖

𝑁−1
𝑛=0 = 𝑖 ∙

2𝜋

𝑁
, 𝑖 = 0, ⋯ , 𝑁 − 1  (8) 

where 𝐹𝜃𝑖
 is the 𝜃𝑖 -rotated version of 𝐹  , 𝐹𝜃𝑖

(𝑛)  and 𝑋(𝑛) 

are the  𝑛-th orientation channel of 𝐹𝜃𝑖
 and 𝑋, respectively.  

After applying ARF, the model generates extra channels to 

incorporate richer rotation information and then, 2D region 

proposals are extracted and scored through 2D anchors to 

generate feature maps with orientation channels. Next, we 

used the ROI pooling on each feature map for cropping the 

features to get the maximum oriented proposal response.  

 An oriented bounding box is used for fitting an ellipse 

determined by five parameters. This becomes more 

challenging compared with using a standard bounding box 

since another variable is involved in the model. However, 

predicting all of the five variables together in one process 

will increase the burden of the shared CNN features, which 

potentially generates a negative effect on the results of 

individual variables. To relieve this issue, the structure 

above is activated to form three separate heads that include 

class classification, 2D box regression, orientation 

regression after passing fully connected layers. Finally, we 

achieve the final output to predict the location parameters, 

the class score of each rotated bounding box, respectively. 

2) Loss construction 

To determine an ellipse, we regress five offsets, 

(𝑡𝑥, 𝑡𝑦 , 𝑡𝑤, 𝑡ℎ )  and 𝑡𝜃  from the two independent branches, 

respectively. These offset are defined as follows: 

𝑡𝑥 =
(𝑥−𝑥𝑎)

𝑤𝑎
, 𝑡𝑦 =

(𝑦−𝑦𝑎)

ℎ𝑎
, 

𝑡𝑤 = 𝑙𝑜𝑔 (
𝑤

𝑤𝑎
), 𝑡ℎ = 𝑙𝑜𝑔 (

ℎ

ℎ𝑎
),                                             

𝑡𝜃 = tan(𝜃 − 𝜃𝑎)                              (9) 

in which 𝑥, 𝑦, 𝑤, ℎ  and 𝜃  denote the center coordinates, 

width, height, and rotation angle of a rotated bounding box, 

respectively. (𝑥, 𝑦, 𝑤, ℎ, 𝜃)  and (𝑥𝑎, 𝑦𝑎, 𝑤𝑎, ℎ𝑎, 𝜃𝑎)  are 

respectively for the rotated predicted box and rotated anchor 

box. The coordinate (𝑡𝑥 , 𝑡𝑦)  s parameterized as an offset, 

from the point (𝑥𝑎, 𝑦𝑎), and it is normalized by (𝑤𝑎, ℎ𝑎). 

The ground-truth offsets 𝑡∗ = (𝑡𝑥
∗ , 𝑡𝑦

∗ , 𝑡𝑤
∗ , 𝑡ℎ

∗ , 𝑡𝜃
∗ ) are given as  

𝑡𝑥
∗ =

(𝑥∗−𝑥𝑎)

𝑤𝑎
, 𝑡𝑦

∗ =
(𝑦∗−𝑦𝑎)

ℎ𝑎
, 

𝑡𝑤
∗ = 𝑙𝑜𝑔 (

𝑤∗

𝑤𝑎
), 𝑡ℎ

∗ = 𝑙𝑜𝑔 (
ℎ∗

ℎ𝑎
), 

𝑡𝜃
∗ = tan(𝜃∗ − 𝜃𝑎)                         (10) 

where (𝑥∗, 𝑦∗, 𝑤∗, ℎ∗, 𝜃∗)  are respectively for the ground-

truth box. Converting the values of the ground truth to the 

offset form 𝑡∗ = (𝑡𝑥
∗ , 𝑡𝑦

∗ , 𝑡𝑤
∗ , 𝑡ℎ

∗)  and 𝑡𝜃
∗  , we employ the 

smooth-L1 loss[30] for calculating the loss,  

𝐿𝑟𝑒𝑔(𝑡, 𝑡∗) = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ − 𝐿1𝑖∈{𝑥,𝑦,𝑤,ℎ} (𝑡𝑖
∗ − 𝑡𝑖),     (11) 

𝐿𝑟𝑒𝑔(𝑡𝜃 , 𝑡𝜃
∗ ) = 𝑠𝑚𝑜𝑜𝑡ℎ − 𝐿1(𝑡𝜃

∗ − 𝑡𝜃)      (12) 

𝐿𝑐𝑙𝑠(𝑡𝑐 , 𝑡𝑐
∗)  represents the class probability, which is 

provided as 

𝐿𝑐𝑙𝑠(𝑡𝑐 , 𝑡𝑐
∗) = −(1 − �̂�𝑐)𝛾log (�̂�𝑐),         (13) 

�̂�𝑐 = {
𝑡𝑐 ,    𝑖𝑓 𝑡𝑐

∗ = 1
1 − 𝑡𝑐 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝑡𝑐
∗ represents the class label of the ground truth for an 

oriented anchor, which is defined as 𝑡𝑐
∗ = 1 if the sample is 

positive, 𝑡𝑐
∗ = 0 when the sample is negative. Here a sample 

is considered positive if the 𝐼𝑜𝑈𝑎ℎ
𝑔𝑡

 between the anchor and 

any ground-truth, and their angular difference 𝛿𝑎ℎ
𝑔𝑡

 satisfy 

𝐼𝑜𝑈𝑎ℎ
𝑔𝑡

> 0.7  and 𝛿𝑎ℎ
𝑔𝑡

<
𝜋

12
, respectively; otherwise, this 

sample is defined as negative. 𝑡𝑐 is the predicted probability 

for this sample being an ellipse. The factor (1 − �̂�𝑐)𝛾  can 

adjust the loss of examples with large 𝑡𝑐
∗ ( 𝛾 = 2 ). The 

summation of four losses is provided as: 

𝐿𝑡 = 𝑤1𝐿𝑟𝑒𝑔(𝑡,  𝑡∗) + 𝑤2𝐿𝑟𝑒𝑔(𝑡𝜃 , 𝑡𝜃
∗ ) +  𝑤3𝐿𝑐𝑙𝑠(𝑡𝑐 , 𝑡𝑐

∗ )                           

(14) 

We balance these terms by the weights 𝑤1, 𝑤2, 𝑤3.  

III. ALGORITHM PERFORMANCE  

Our detector is compared with a recent ellipse detection, 

namely Dong’s detector [2], on the performance, through the 

same evaluation metrics on the public datasets. Considering 



 
Figure. 7. The workflow of robotic manipulation. The initial position(A); the grasping trajectories (B, D); grasping and releasing the object(C, E). 

 
Figure. 8. The robot continuously grasps multiple cylindrical objects and ellipsoid objects in the cluttered scenario. Preparing to grasp(A, D) and 

releasing objects(C); the grasping scenario enclosed by a red frame is visualized in the front view (the first one), the top view (the second one) and Rviz 

view (the third one) (B); for each green frame, the first shows the detection results and the second illustrates the robot grasps the ellipsoid object(E, F). 
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the two main metrics, F-measure and the execution time 

factors together, our method outperforms Dong’s method. 

We use the public datasets, including Dataset Prasad [13], 

dataset#1, dataset#2 [31] for evaluating the ellipse detection. 

The proposed detector is superior to Dong’s method for F-

measure, precision and recall, as illustrated in Table I. 

Figure 6 illustrates several detected cases. The proposed 

detector and Dong’s detector both cannot detect ellipses with 

very small size, such as Fig. 6(B), and have an unsatisfied 

performance on detecting some severely occluded ellipses, 

such as Fig. 6(A). The performance of our detector on 

detecting ellipse small ellipses is also better than that of 

Dong et al, as shown in Fig. 6(C). Dong’s detector relies on 

combined arcs from three quadrants, leading to a valid 

detection when an ellipse consists of arcs from two 

quadrants due to the occlusion. Dong’s method has a better 

performance than ours on fitting ellipse performance. 

IV. ROBOTIC MANIPULATION EXPERIMENTS 

A series of robot grasping experiments in real scenarios 

are conducted to evaluate the proposed perception method  

based on Sim2Real random domain through live video 

streams. The experimental setup consists of a 6-DOF 

industrial robot arm-Universal Robot 5 with a 3-finger 

Robotiq gripper. For capturing the targets, we mount a stereo 

camera ZED on a frame, as shown in Fig. 7.  

A. Grasping cylindrical objects 

Each experimental round, we fed some cylindrical objects 

frequently to a table.  In each trial, the robot used the 

detection results in an RGB image to plan the grasping 

trajectory by continuously integrating the stream of 

incoming depth image for picking and delivering cylindrical 

objects, as illustrated in Fig. 8(A, B, C). We consider a 

successful grasp if the robot delivers a cylindrical object 

without dropping.  

We repeated the pipeline for getting a statistical result to 

evaluate the detector’s robustness.  Out of the 50 total grasp 

attempts, 47 were successful resulting in a success rate of 

94%. The proposed learning-based perception system can 

successfully detect cylindrical objects in the new scenarios. 

All the failures are attributed to the two following reasons. 

Since the images in the dataset used in the training phase do 

not reflect the real world perfectly, inaccurate detection 

cases occur. The remaining failure was that the gripper had 

one collision with an object as the robot almost arrived at a 

position beyond its operation space.  The objects were 

pushed out of the workspace during grasp execution and 

therefore could not be delivered to the destination.  

B. Packing fruits with ‘ellipse’ outlines  

To illustrate that the proposed perception strategy can be 

used in agriculture scenarios, we conducted experiments of 

the robot grasping fruits whose outlines are similar to 

ellipses in cluttered environments. The multiple oranges 

were placed randomly on a table. The size of an orange is 

relatively small in a camera view. Moreover, there exists the 

calibration deviation in the grasping system and the used 

gripper does not include any sensor for providing grasping 

feedback.  Thus, grasping could fail even with a slight error 

in perception. Our detection approach, however, overcame 

these issues and accurately detected multiple objects at the 



same time. Providing accurate perception feedback to the 

robot is the prerequisite of avoiding collision for realizing a 

successful grasp. We constructed a ‘closed loop’ grasp 

system. In particular, the robot continuously attempted 

multiple grasps until all targets were grasped, as illustrated 

in Fig. 8(D, E, F). 

For quantitative results, we randomly placed some 

oranges and apples amidst clutter on a table. The robot first 

goes to a defined pre-grasp position, then executed a top-

down grasp, yielding 3 trials per object. Overall, 48 fruits of 

a total of 50 fruits were successfully packed into boxes at 

first try except three ones that were ejected over by the 

gripper while moving a grasped object to the target container. 

Sources of grasping error include the ellipse detection 

algorithm and miscalibration between the camera and the 

robot.  

V. CONCLUSION  

In this paper, we constructed a learning-based ellipse 

detector for robotic grasps of cylinders and ellipsoids. A 

CNN network is proposed to detect ellipses with sufficient 

accuracy and speed to permit the robotic manipulation of 

cylinders and ellipsoids in complicated scenes. In grasping 

experiments, the robot successfully grasps cylinders and 

ellipsoid fruits in cluttered environments, which illustrates 

the proposed detector is potentially applicable to practical 

environments.  
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