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Abstract—Avoidance is a necessary capability for a mobile 

robot to perform tasks such as delivering obstacles in 

household or industrial scenarios. The existing avoidance 

strategy based on TEB (Timed Elastic Band) local planner and 

cost-map provided by Robotics Operating System(ROS) 

cannot realize the excellent performance when a robot and an 

obstacle both move.   In this work, we present a real-time，
simple and reliable approach to detecting and tracking 

obstacles via a two-dimensional (2D) lidar in dynamic 

scenarios where the mobile robot and the obstacle are moving. 

Obstacles are represented by a set of points against their 

outlines and the information of obstacles is initialized and 

updated via the raw laser measurement. First, the obstacle is 

detected by three main steps: pre-processing, segmentation 

and merging, classification of consequent measurements. 

Second, we use a hierarchical method to realize data 

associations for figuring out the corresponding matches 

among obstacles with the consecutive time. Last, after doing 

the data association, we need to estimate the motion of the 

dynamic obstacle for being tracked by the Kalman filter. 

Extensive experiments performed in the simulation and 

practical scenarios indicate that the proposed method enables 

a mobile robot to perform dynamic avoidances efficiently. An 

additional video is attached to this work in YouTube, 

https://www.youtube.com/watch?v=A2Ad8rNQqYw.   
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I. INTRODUCTION 

VOIDING obstacles, a key function of mobile navigation, 

poses a typical challenge for mobile robots, for which the 

real-time perception is considered as the key bottleneck 

because there is a large amount of the environment 

information that needs to be processed. The detection and 

tracking of participants such as pedestrians and robots play a 

crucial role in a safe mobile navigation. A common scenario 

involves the autonomous navigation of a mobile robot, in 

which a robot is required to detect obstacles and predict the 

motion of moving obstacles in unstructured environments, as 

shown in Fig. 1. The perception efficiency for dynamic 

avoidance yields the limitations of the capability of robots 

making decisions such as avoidance actions, especially in 

typical human-involved environments with considerable 

clutter. Moreover, few of the perception strategies can run in 

real time due to a large number of relevant vectors. 

   In terms of robotic applications, a perception system 

interprets the surroundings using visual cameras and/or laser 

scanners[1-6]. Although vision-based perception approaches 

have advantages especially in semantic understanding[7], their 

major limitations result in high sensitivity to illumination. 

Here we consider the 2D point-cloud measurement from a 2D 

lidar which is with high resolution, insensitive to lighting 

conditions, and just costs less computational resource. There 

is a classical avoidance strategy including the timed elastic 

band(TEB) local planner[8-10] and the cost-map converter in 

ROS[11].  Specifically, the TEB problem is formulated as a 

weighted multi-objective optimization framework by dynamic 

constraints of the motions. Moreover, the TEB local planner 

utilizes a cost-map converter [8-10]  to transform occupied 

cells of 2D map to a set of convex geometric primitives 

(points, lines, polygons) that represent obstacles in the map by 

clustering. By integrating the geometric primitives 

representing obstacles during the navigation period, the TEB 

local planner can avoid obstacles. However, all the obstacles 

detected by a mobile robot are also divided into a large number 

of geometric primitives considered as obstacles by TEB local 

planners, which lead to a considerable computational resource. 

Thus, a mobile robot with the TEB local planner has 

unsatisfactory performances in avoiding dynamic obstacles.  
The target of this work is to achieve safe navigation for a 

mobile robot in indoor environments with some pedestrians. 
We propose a principled framework for the detection and 
tracking of dynamic obstacles by means of one single 2D lidar 
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Figure 1. Robot avoiding an obstacle based on the proposed algorithm.  
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regardless of obstacle classes and shapes, integrating the TEB 
local planner to realize obstacle avoidance.  The circles with 
infinite height and the line are used to be representatives for 
modeling the obstacles in the environment. To realize a 
collision-free navigation, we approximate the real underlying 
model of the obstacle which is deemed acceptable for yielding 
a dynamic local map since the obstacle recognition is not our 
objective.   The motivation of the line and the circle 
representing obstacle models is threefold. Firstly, a large 
obstacle such as a long wall is represented by a line with just 
two endpoints. Secondly, smaller obstacles such as desk legs 
or moving persons in practical scenarios are in general 
modeled as cylinder-like shapes. Thirdly, the circle model with 
three parameters in the 2D space is inexpensive to compute 
comparing to occupancy grids. Thirdly, enlarging the 
dimension of the cylinder can generate a safe distance between 
an obstacle and a moveable robot.  As for the pre-processing, 
we first use the median filter to discard the noise and segment 
the 2D point cloud into independent laser-point cloud blocks 
collected by the 2D laser. Then, using geometric primitive 
representation, the segmentation is performed on laser-point 
cloud blocks, followed by merging (clustering) laser-point 
cloud blocks with small distances. Further, all the detected 
obstacles are modeled as lines and circles. Despite a higher 
computation resource, we indicate that some online 
calculations can still be completed. Finally, we utilize a 
hierarchical data association strategy based on  Kalman Filter 
(KF) to estimate the motions. 

We aim to achieve a better avoidance strategy by the 
proposed obstacle detection and tracking algorithm when the 
mobile robot and the obstacle are moving. However, the 
robotic navigation is a systemic work, not only combining the 
perception system but also integrating the robotic control[12], 
planners[13] and localization[14]. In this work, the simple 
designed controller based on a differential kinematic model is 
used for driving a two-wheel mobile robot. The global planner 
in ROS is integrated into the robotic navigation system for 

planning a global path and a particle filter-based adaptive 
Monte Carlo localization (AMCL) is adopted for tracking 
the robot’s pose in a known map extracted from 2D data. 

We organize the paper as follows. After reviewing existing 

methods in section II, we introduce the core concept of 

detecting and tracking dynamic obstacles in detail in section 

III. The performance of the proposed avoidance strategy is 

evaluated by abundant experiments in section IV.  Finally, the 

conclusion is made in section V.  

II. RELATED WORK 

There exists a vast amount of research works regarding the 

problem of detection and tracking of multiple dynamic 

obstacles.  

In terms of describing the surrounding environment, these 

existing lidar-based approaches can mainly be classified into 

two categories in detail:  1) grid-based [15, 16] and 2) vector-

based [3] methods. Most of approaches apply the 2D or 3-

dimensional(3D) occupancy grid (grid-based) to represent 

environments [17]. In particular, the occupancy grid in a map 

is divided into spaced cells and then complex geometries are 

used for representing obstacles for detecting and tracking 

obstacles. For example, the grid trajectories features were 

applied to detecting dynamic obstacles in [18].  Another 

commonly used representation of the environment, the vector-

based method,  incorporates simple and higher-level 

predefined geometric features such as line segments, circles, 

ellipses and rectangles, boxes to directly model obstacles 

in[19-21]. Therefore, obstacles described by geometric 

features can be expressed via the pose(position and orientation) 

of the geometric feature.  In comparison to the first category, 

the vector-based approach with the compact representation of 

the surrounding environment is particularly suitable for 

describing a sparse scenario due to the low memory 

consumption.  Our work concentrates on the obstacle detection 

and tracking by 2D vector-based representatives.  

The dynamic obstacle avoidance system involved by the 

perception prediction and path planning is modifying and 

estimating the pose of a moving robot in real time such that the 

robot is able to avoid collisions with moving obstacles found 

on its path. There are several classical methods such as  virtual 

force field(VFF) [22, 23], vector field histogram(VFH) [24], 

dynamic window approach(DWA) [25]and TEB approaches[8, 

9, 26]. In terms of VFF [22, 23], the histogram grids are 

applied to representing the area through which the robot can 

pass. However, such a method is not available when the mobile 

robot and moving obstacle close to each other generate the 

repellent effect. To address such an issue in VFF, Borenstein 

et al.[24] presented the VFH method that employs the 2D 

histogram grid to describe the surroundings for obtaining a 

one-dimensional polar histogram constructed around the  

momentary location of the robot. In contrast to VFF and VFH 

methods, DWA was developed to avoid obstacles by means of 

defined cost functions based on the constraints of mobile 

robots [25] on the kinematics and dynamics. The elastic band 

based method can adapt to dynamic path changes by adjusting 

the path to generate a new once a new obstacle is detected [26]. 

 

III. METHODOLOGY 

In the section, we first introduce how to detect obstacles 
(A). Then, the details of tracking obstacles are described (B). 

A. Obstacle Detection  

1) Pre-processing 

 A set  𝒑 with 𝑁 measurement points is from a lidar scan. 
We represent each raw point 𝑝𝑖  in 𝒑  in the form of Polar 
coordinates (𝑅𝑖, 𝜃𝑖  ) as follows, 

𝒑 ≜ {𝑝𝑖 = (𝑅𝑖 , 𝜃𝑖)}, 𝑖 ∈ [1, 𝑁]                 (1) 

    The accuracy of measurements is disturbed by the noise. 
The outliers may lead to such a situation where some 
measurement points fail to represent an obstacle as they may 
be unstable or noise points in practical environments.  A range 
filter is integrated into the proposed algorithm to remove 
useless points with invalid values represented by NaN or 
beyond the range. A 3 × 3 median filtering matrix is applied 
to smoothing the 2D point data. The distance of a point 𝑖 from 
a laser scan as 𝑅(𝑡,𝑖)  at the current time 𝑡 . Thus, the 3 × 3  

median matrix used for filtering out some points is given as 
follows: 
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[

𝑅(𝑡−1,𝑖−1)   𝑅(𝑡−1,𝑖)   𝑅(𝑡−1,𝑖+1)

𝑅(𝑡,𝑖−1)       𝑅(𝑡,𝑖)   𝑅(𝑡,𝑖+1)

𝑅(𝑡+1,𝑖−1)   𝑅(𝑡+1,𝑖)   𝑅(𝑡+1,𝑖+1)

]               (2) 

   We use the median of the 9 elements in the median filter  as 
the distance between the laser point 𝑖 and the laser mounted on 
the robot at the time t for discarding noise points in 
consideration of the space and time, reducing the complexity 
and increase accuracy of the obstacle classification. 

After filtering out the noise points, we segment a large laser-

point cloud into independent small laser-point cloud blocks in 
order.  For each laser-point cloud block, the starting point 
index satisfies 𝑅𝑖−1 = 0  and 𝑅𝑖 ≠ 0 . Moreover, the ending 
point index satisfies 𝑅𝑖 ≠ 0 and 𝑅𝑖+1 = 0, as shown in Fig. 
2(A). 

2) Segmentation and merging  

All laser points are segmented into point-cloud blocks that 

have strong correlations based on practical properties. There 

exist two main segmentation types for the point cloud 

measured via a lidar such as the complete segmentation and 

the partial segmentation.  The complete segmentation means 

one obstacle is considered as one single segment. In terms of 

the partial segmentation, one obstacle can be characterized by 

two or more segments (e.g. human legs).  In this work, we 

work on the partial segmentation. In practical environments, 

some large segments, such as walls, are usually interrupted by 

small intervals, which results in a wrong case that one obstacle 

is represented by more than one segment. It is obvious that the 

density of measurements gradually decreases in the lidar data 

and the layout of points becomes sparse as the measured 

distance increases (see Fig.2-A). Here we use the distance of 

two endpoints of the small interval to determine the 

segmentation.   
   For segmenting the data after filtering, we first determine the 
distance 𝑑 between the two sequential measurement points 𝑖 
and 𝑖 + 1 defined in the polar coordinate. 

𝑑(𝑅𝑖 , 𝑅𝑖+1) = √𝑅𝑖
2 + 𝑅𝑖+1

2 − 2𝑅𝑖𝑅𝑖+1 cos ∆𝛼      (3) 

where 𝑅𝑖 and 𝑅𝑖+1  represent the measurement distances of the 
points 𝑖 and 𝑖 + 1. ∆𝛼 denotes the resolution angle of the lidar.  
If 𝑑  is bigger than 𝑘𝑊 , the laser-point cloud block is 
segmented into two small blocks, as shown in Fig.2(B).  𝑊 
denotes the width of the robot and 𝑘 is the setting dynamic   
amplification factor as follows 

{
𝑘 =

𝑊∙𝑅𝑖∙𝑅𝑖+1

100(𝑅𝑖+𝑅𝑖+1)
,   

𝑅𝑖+𝑅𝑖+1

2
> 𝑇𝑑;

𝑘 = 0.15, 0 <
𝑅𝑖+𝑅𝑖+1

2
≤ 𝑇𝑑 .

            (4) 

where 𝑇𝑑(𝑇𝑑=10) is a threshold of the measured distance. We 

define the dynamic amplification factor 𝑘  to adjust the 

distance threshold between the two adjacent points with the 

width of the robot and the measured distance changing. For 

example, as the measured distance increases, the distance 

between two adjacent lidar points also becomes larger. We 

increase the threshold to reduce the number of segments. 

Moreover, if the robot width is large, the small gap with a 

small distance between the two adjacent points tends to merge 

together so that the robot cannot go through the gap and reduce  

the number of segments in the long distance.   

The merging processing needs to be done for some laser- 

point cloud blocks. As shown in Fig. 2(C), 𝐿  is the space 

distance between the termination point of the first point set 

with the index value 𝑝 and the starting point of the last point 

set with the index 𝑞 . This connection can be done if the 

following condition is met.  The robot cannot pass the narrow 

gap if 𝐿 is smaller than 𝑊: 𝐿 < 𝑊. The enhancement of the 

algorithm involves the combination of two segments separated 

by a small interval.  In this case, these two laser-point cloud 

blocks are merged into one laser-point cloud block, as shown  

𝑊  

𝑅
𝑖  

𝑅𝑖+1  

𝑅𝑖−1  

𝑅𝑖  

𝑂𝑙  

Block 1

Block 2

𝑑1   

𝑑2   

Starting point

Starting point

Ending point

𝑑1 < 𝑑2   

∆𝛼  

𝑅𝑖  

𝑅
𝑖+

1
 

𝑑(𝑅𝑖 , 𝑅𝑖+1)  

Robot

Robot

Ending point

𝑅𝑖  

Robot

Point-cloud block

Sub-block 1

Sub-block 2

Block 1
Block 2

𝑂𝑙  
𝑂𝑙  

𝑊  𝑊  

𝐿  

CB

A

𝑝  𝑞   

𝑅𝑝  𝑅𝑞  

Block 1 Block 2

 
Figure 2.  Segmenting the laser-point cloud into independent laser-point 
cloud blocks(A), segmenting one block into two small blocks (B) and 
merging two blocks into one blocks(C). 𝑑1 or 𝑑2 is the different of two 
points, on the two laser rays, with equal distance to the laser origin 𝑂𝑙;   
𝑅𝑖 represents the distance of the point 𝑖; 𝑑(𝑅𝑖, 𝑅𝑖+1) denotes the distance 
the two sequential measurement points; 𝐿 indicates the distance between 

the termination points of two adjacent laser-point cloud blocks;  𝑊 

represents the width of the robot; the red dots are the laser points. 
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Figure 3.  Classification of segments. The two points with the starting 
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distance between 𝑝  and 𝑞 ; 𝐷𝑚𝑎𝑥  represents the maximum one among 

distances from points on the laser-point block to the line segment formed 
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Algorithm 1: Splitting segments into subsets  

Data:       

𝑁 ←  The number of measurement points in the point-cloud block 

𝐵 ≜ {𝑝𝑖  }, 𝑖 ∈ [1, 𝑁];      
𝑇𝑛 ←   The threshold; 

𝐷𝑚 ← The maximum value of the distances between each point and 

the line fit by two endpoints; 

S ← the distance between two endpoints; 

𝑉𝑟𝑒𝑠𝑢𝑙𝑡 ← the vector storing the point-cloud block with 𝑁 less than  

𝑇𝑛;  

𝑉𝑐 ← the vector storing the point-cloud block with 𝑁 more than  𝑇𝑛;  

𝑁𝑐 ← the number of elements in 𝑉𝑐; 

𝑁𝑐0 ←  the number of points in  𝑉𝑐[0]; 
 

 Put 𝐵 into 𝑉𝑐 
1  While  (𝑁𝑐 ≠ 0) do 
2      If  (𝑁𝑐0 > 𝑇𝑛) 
3             Calculate 𝐷𝑚 of  𝑉𝑐[0] and get 𝑝𝑘 that corresponds to  𝐷𝑚 
4                If (𝐷𝑚𝑎𝑥 > 0.2|𝑆|) 
5                         Split 𝑉𝑐[0]  into 𝐵1(𝐵1 ≜ {𝑝1, 𝑝2, … , 𝑝𝑘})  

                                        and 𝐵2(𝐵2 ≜ {𝑝𝑘 , 𝑝𝑘+1, … , 𝑝𝑁𝑐0
})  

6                        If (𝑘 > 𝑇𝑛)  
7                              Put 𝐵1 into 𝑉𝑐 

8                     Else  

9                              Put 𝐵1  into 𝑉𝑟𝑒𝑠𝑢𝑙𝑡 

10                    If (𝑛 − 𝑘 + 1 > 𝑇𝑛)  

11                            Put 𝐵2 into 𝑉𝑐 

12                    Else 

13                            Put 𝐵2 into 𝑉𝑟𝑒𝑠𝑢𝑙𝑡  

14                    Delete 𝑉𝑐[0] 
15              Else  

16                    Delete 𝑉𝑐[0] 
17    Else  

18              Delete 𝑉𝑐[0] in 𝑉𝑐 

19              Put 𝑉𝑐[0] into 𝑉𝑟𝑒𝑠𝑢𝑙𝑡 

20  End    

Output: 𝑉𝑟𝑒𝑠𝑢𝑙𝑡 

 

in Fig.2(C). Also, we compensate the corresponding values to 

those laser points between 𝑝  and 𝑞  for making the two 

combined point sets spatially continuous.  In order to 

determine the number 𝑁   of the compensated points, we 

calculate the average distance 𝑑𝑎𝑣𝑒𝑟  of the adjacent points of 

two point-cloud blocks and then, 𝑁 =
𝐿

𝑑𝑎𝑣𝑒𝑟
. The distances of 

2D points 𝑝  and 𝑞   is 𝑅𝑝   and 𝑅𝑞  respectively, thus the 

distance of the compensated point 𝑖 is represented as follows,  

𝑅𝑖 = 𝑅𝑝 + 𝑖 ∙
𝑅𝑞−𝑅𝑝

𝑁
.                      (5) 

3) Classification 

   By segmenting and merging, the point cloud coming from a 

laser consists of independent point sets (point-cloud blocks). 

The basic idea of classification is to describe any obstacle via 

a set of simple shapes[27]. The point-cloud block can be 

formulated as two basic shapes such as the circle, liner 

segment. The approximation of the point-cloud blocks based 

on these geometric models has two major advantages. First, a 

number of discrete points used for representing any obstacle 

are replaced by just inexpensive parameters such as position 

and radius, which simplifies computing.  Second, such 

averaging effect for describing the model can be robust to cope 

with the measurement noise.  Although such an approximation 

may result in unnecessary loss of motion space of the mobile 

robot. Indeed, as our main target is to realize a safe dynamic 

navigation rather than the obstacle recognition, the real 

underlying model of the obstacle can be approximated is 

deemed acceptable. 

   To store the obstacles for further processing, we build a set 

of obstacles as 𝕆, 𝕆 ≜ {𝕃, ℂ}. 𝕃 denotes a set of line-type 

obstacles and ℂ represents a set of circle-type obstacles.  

   (1) If the number of points of a point set is more than a 

predefined threshold 𝑇𝑁(𝑇𝑁 = 10), we first use a line segment 

to connect the starting point 𝑝 and the ending point 𝑞 and then, 

calculate the maximum value 𝐷𝑚𝑎𝑥  of distances from each 

point to the line segment, as illustrated in Fig. 3.  If 𝐷𝑚𝑎𝑥 <
0.2|𝑆|, this point-cloud block will be fit to a line segment with 

two endpoints 𝑝 and 𝑞(see Fig.3-A).  

If 𝐷𝑚𝑎𝑥 > 0.2|𝑆|, the point-cloud block can be split further. 

The corresponding algorithm is shown in Algorithm 1. We 

recursively repeat this procedure for each new subset. When 

the number of points in a new subset is less than 𝑇𝑁 , the 

splitting stops.  

(2) When the number of points in the point-cloud block is 

less than 𝑇𝑁, we utilize a circle to represent this point-cloud 

block with a relatively small size. There are two main reasons. 

First, if the size of point-cloud segments is very large (e.g. 

corridor walls), the circle extracted from such a segment would 

cause that an obstacle covers a vast area of the workspace. The 

circle representative is suitable for a point-cloud block with a 

small size. Second, indeed, the size of a dynamic obstacle (e.g., 

humans) is far less than that of static obstacles (e.g., walls) in 

indoor environments.  

    To determine the radius of the circle extracted from a point-

cloud block, we first use the method stated above to fit the 

point set. When the point-cloud block satisfies 𝐷𝑚𝑎𝑥 < 0.2|𝑆|, 
the midpoint of line segment connected by two endpoints is set 

as the center and the distance between the center and the 

maximum-distance point is the circle’s radius (see Fig.3-B).  

Otherwise, we first need to determine the convexity or 

concavity of the point-cloud block since the parameters of the 

circle extracted from a point-cloud block depend on the 

convexity or concavity. 
Here we propose a highly efficient algorithm to determine 

the convexity or concavity of the point-cloud blocks based on 
the vector cross product, as shown in Algorithm 2.  We first 
take the two endpoints of the segment and then, obtain the 
midpoint of them, considering the midpoint as the center of the 
estimated shape. Further, the distance from the center to each 
point of the segment is calculated so that the maximum one 
among these distances is extracted. Lastly, this maximum 
distance serves as the circle’s radius.  

    In order to realize a free collision between a robot and an 
obstacle, the radius of the circle is enlarged by a margin value  

defined as a safe distance, as shown in Fig.3(blue circles).   If 
this segment is concave, the zone of the triangle formed by two 
endpoints of the segment and the origin of the lidar is free for 
the mobile robot (Fig.3-C). While if the segment is convex,  
the zone between the origin of lidar and the nearest point from 
the lidar to the segment is safe. The robot can move at the safe 
zone (Fig.3-D). All the point-cloud blocks represented by 
circles are added to the set ℂ. 

B. Obstacle Tracking 

We implement a simple Kalman filter[28] into the proposed 
system, allowing for the tracking of circular obstacles.  The  
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detailed tracking algorithm is described in this section.  
Specifically, we introduce how any dynamic obstacles with 
any shape to be modeled such as to be tracked. In terms of 
tracking new dynamic obstacles, the state initialization is non-
trivial due to the motion arbitrariness and independent of each 
other.  New dynamic obstacles can be initialized by the system 
and put into new track containers while static obstacles need 
to be merged into the static background for achieving dynamic 
tracks.  After initializing a new track, we put it into the set of 
existing dynamic tracks if it is continuously detected more 
than predefined times; otherwise, this track will be discarded.   

1) Hierarchical data association  

A) Coarse-level data association 

After classing the measurements from a lidar scan, the 

point-cloud segment (point set) is then assigned to the static 

background or a dynamic obstacle recursively. The target of 

the data association is to figure out which detected obstacle 

taken at the last time interval 𝑡 − 1  corresponds to which 

detected obstacle captured at the current time interval 𝑡(Note 

that 𝑡 − 1 represents the last time interval rather than the time 

before 1 second). Specifically, to track obstacles, two-point 

sets 𝑃 and 𝑄  detected at different time intervals are aligned. 

The global nearest-neighbor search algorithm is applied to 

finding the “best” fits for the existing tracks. If no 

correspondences are found for some point sets, then these 

point sets are considered as new tracks and are initiated by the 

Kalman filter. The new point set 𝑃  is associated with its 

nearest neighbor 𝑄 if the Euler distances of their positions and 

radii are within two thresholds (5 and 3) respectively; 

otherwise, it is considered as a new point set to be tracked. 

First, obstacles detected at 𝑡 − 1   are considered as old 

obstacles, and obstacles detected at 𝑡  are regarded as new 

obstacles. Then, we obtain the distances between each old 

obstacle and each new obstacle regarding the positions and the 

sizes by a traversing algorithm. Third, for each old/new 

obstacle, we ascendingly sort its distances with new/old 

obstacles. Thus, corresponding new/old obstacles with 

minimum distance to each old/new obstacle are extracted. 

Based on the pairing information, two preliminary 

correspondence maps including 𝑀𝑛→𝑜  and 𝑀𝑜→𝑛  are 

generated. Finally, a preset distance threshold 𝑇𝑚𝑎𝑥(𝑇𝑚𝑎𝑥 =
5)  is used in  𝑀𝑛→𝑜  and 𝑀𝑜→𝑛   for removing the 

correspondences with distances larger than 𝑇𝑚𝑎𝑥 . We update 

these correspondences to the map 𝑀𝑟. 

B) Fine-level data association 

    Given 𝑀𝑟, the fine level data association can further take 

into account the following correlations among observations. 

Normally, each detected new obstacle corresponds to only one 

old obstacle in the environment.  However, in this resulted 

correspondence map, there might be that one new/old obstacle 

is associated with multiple old/new obstacles. A case example 

is human’s legs while walking. These two cases can be 

detected by exploring the duplicate correspondences in the 

map  𝑀𝑟 . Determination of the correspondence type for 

currently examined obstacles provides crucial information in 

terms of the state update.  The state of a new obstacle is 

updated, relying on old obstacles. Any new obstacle is updated 

depending on the original obstacle in the second case. All 

obstacles involved in these two cases are marked as tracked 

ones. 
    It is possible that some new obstacles are not associated with 
any old obstacle after the data association.  These unmatched 
point sets are then regarded as new obstacles in the proposed 
detection and tracking system. These new obstacles are put 
into the dynamic map such as to be initiated and tracked by 
KFs. If an obstacle is deemed dynamic, its state is estimated 
by KF. 

2) Kalman filter  

For realizing dynamic avoidance, the perception system 

needs to estimate the motion parameters of each moving 

obstacle. For tracking obstacles, we utilize Kalman filter[28] 

to estimate the states of detected obstacles. Each newly 

detected obstacle marked as tracked will be initialized by a 

separate filter. For each sample time, the used filter updates 

the prediction and the correction steps. The position and size 

of obstacles and the rates of change of each variable describing 

Algorithm 2: Determine the convexity or concavity of the point-

cloud block  

Data:  

𝑜𝑙 ← The origin of the lidar; 

𝑇𝑖𝑜 ←   The threshold; 

𝑁 ←  The number of measurement points in the point-cloud block 

𝐵 ≜ {𝑝𝑖  }, 𝑖 ∈ [1, 𝑁];      
𝑉𝑖 ←the vector storing 𝑁𝑖 points inside ∆𝑜𝑙𝑝1𝑝𝑁; 

𝑉𝑜 ←the vector storing 𝑁𝑜 points outside ∆𝑜𝑙𝑝1𝑝𝑁; 

𝑟𝑖𝑜 ←the ratio of the numbers of points inside ∆𝑜𝑙𝑝1𝑝𝑁 to outside 

∆𝑜𝑙𝑝1𝑝𝑁; 

 
Suppose that the order of three points consisting of the triangle 

∆𝑜𝑙𝑝1𝑝𝑁 is anticlockwise such as 𝑜𝑙 , 𝑝1, 𝑝𝑁 . 
True represents  𝐵 is convex relative to the origin of the lidar; 

False denotes  𝐵 is concave relative to the origin of the lidar. 

 

1 While (𝑖 ≠ 𝑁) do  

2       Calculate three cross products as follows, 

3        𝑇1 = 𝑝𝑖𝑜𝑙 ⊗ 𝑝𝑖𝑝1; 

4         𝑇2 = 𝑝𝑖𝑝1 ⊗ 𝑝𝑖𝑝𝑁; 
5         𝑇3 = 𝑝𝑖𝑝𝑁 ⊗ 𝑝𝑖𝑜𝑙; 

6        If (𝑇1 > 0 && 𝑇2 > 0  && 𝑇2 > 0 )  
|| (𝑇1 < 0 && 𝑇2 < 0  && 𝑇2 < 0 )  

7                 Put 𝑝𝑖  into 𝑉𝑖 

8        Else  

9                 Put 𝑝𝑖  into 𝑉𝑜 

10      End  

11      𝑟𝑖𝑜 =
𝑁𝑖

𝑁𝑜
; 

12      If (𝑟𝑖𝑜 > 𝑇𝑖𝑜) 

13              True;  
14     End  

15              False.  

Output: True or False  

 

Figure. 4. Simulation tests in the z-shape area with different placements 

of 3(left side) and 6(right side) obstacles, respectively. 
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the obstacle’s state are estimated for realizing the safe 

navigation of a mobile robot in the 2D environment. We 

denote a vector including detected obstacles as 𝓐𝑡 at the time 

instant 𝑡.  This vector is provided as follows: 

𝓐𝑡 = {𝒜𝑡
𝑖 }, 𝑖 ∈ [1, 𝑛], 𝑛 ≥ 1          (6) 

where  

𝒜𝑡
𝑖 = [𝑥𝑡

𝑖, �̇�𝑡
𝑖 , 𝑦𝑡

𝑖 , �̇�𝑡
𝑖, 𝑟𝑡

𝑖 , �̇�𝑡
𝑖 , 𝐼𝑡

𝑖  ]
𝑇
 

and 𝑛 represents the number of obstacles in an environment. 

Eq. 6 illustrates the state of the 𝑖 th obstacle, with 𝑥𝑡
𝑖  and 𝑦𝑡

𝑖  

being the position of the obstacle, 𝑟𝑡
𝑖  the circle radius, �̇�𝑡

𝑖 and 

�̇�𝑡
𝑖 the linear velocities, and 𝐼𝑡

𝑖 the index of the obstacle. Due to 

the invariance of the index of the obstacle, we omit the 

parameter in the equations. With such a definition of the state 

vector,  we present the track state transition modeled: 

𝒜𝑡+1
𝑖 = 𝐹𝒜𝑡

𝑖 + 𝐺𝑤𝑡                       (7) 

𝐹 is expressed as follows: 

𝐹 = [
𝐴 0 0
0 𝐴 0
0 0 𝐴

] with 𝐴 = [
1 𝑠
0 1

]              (8) 

𝑠 is the length of a sampling period. 𝐺  represents the noise 

gain matrix, which is expressed as follows, 

 

𝐺 = [
𝐵 0 0
0 𝐵 0
0 0 𝐵

] with 𝐵 = [
1

2
𝑠2

𝑠
]                (9) 

The measurement equation can be formulated as follows: 

𝑚𝑡+1 = 𝐻𝒜𝑡+1
𝑖 + 𝑣𝑡+1                             (10) 

where 𝐻 is the measurement model, expressed as: 

𝐻 = [
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

]                      (11) 

According to the chosen kinematics model, the process noise 

𝑤𝑡   and measurement noise 𝑣𝑡+1 satisfy zero-mean white 

Gaussian noise distributions 

                                   𝑝(𝑤)~𝑁(0, 𝑄)                                 

 𝑝(𝑣)~𝑁(0, 𝑅)                                 (12)                        

Thus, covariance kernels 

    𝐸 {𝑤𝑡𝑖
𝑤𝑡𝑗

𝑇} = 𝑄𝑡𝑖
𝛿𝑖𝑗 

 𝐸 {𝑣𝑡𝑖
𝑣𝑡𝑗

𝑇}   = 𝑅𝑡𝑖
𝛿𝑖𝑗                        (13) 

where 𝛿𝑖𝑗  is Kronecker delta function. When all of the 

parameters are known, the Kalman filtering equations are: 

�̂�(𝑡|𝑡)
𝑖 = �̂�

(𝑡|𝑡 − 1)
𝑖 + 𝐾𝑡 [𝑚𝑡 − 𝐻�̂�

(𝑡|𝑡 − 1)
𝑖 ]     (14) 

�̂�
(𝑡 + 1|𝑡)
𝑖 = 𝐹�̂�(𝑡|𝑡)

𝑖                       (15) 

where �̂�(𝑡|𝑡)
𝑖  is the estimate of 𝒜𝑡

𝑖  based on the measurements 

{𝑚0, ⋯ , 𝑚𝑡}  and �̂�
(𝑡 + 1|𝑡)
𝑖  is the prediction of 𝒜𝑡+1

𝑖  with 

the measurements {𝑚0, ⋯ , 𝑚𝑡}. The matrix 𝐾𝑡 is the "Kalman 

filter gain" and is determined by 

𝐾𝑡 = 𝑃(𝑡|𝑡 − 1)𝐻𝑇 [𝐻𝑃(𝑡|𝑡 − 1)𝐻𝑇 + 𝑅𝑡]
−1

     (16) 

where the covariance matrix of the error in predicting 𝒜𝑡
𝑖   is 

provided as 

𝑃(𝑡|𝑡 − 1) = 𝐸 {[𝒜𝑡
𝑖 − �̂�

(𝑡|𝑡 − 1)
𝑖 ] [𝒜𝑡

𝑖 − �̂�
(𝑡|𝑡 − 1)
𝑖 ]

𝑇

} (17) 

and 𝑃(𝑡|𝑡 − 1) is computed using 

𝑃(𝑡 + 1|𝑡) = 𝐹𝑃(𝑡|𝑡)𝐹𝑇 + 𝐺𝑄𝐺𝑇                      (18) 

where 

𝑃(𝑡|𝑡) = 𝑃(𝑡|𝑡 − 1) − 𝐾𝑡𝐻𝑃(𝑡|𝑡 − 1)                (19) 

    Generally, one new tracked obstacle corresponds to just one 

old obstacle. If a new obstacle maps more than one old 

obstacles, we use the average of states of old obstacles to be 

that of the new obstacle. When an old obstacle has more than 

one corresponding new obstacles, the original obstacle is 

copied for each new detected one, and their states are updated 

in new information sets. 

 The convexity-concavity characteristics of the circle-shape 

model are invariant with respect to the distance. However, the 

size of the circle is adjusting with the measurement distance 

changing. Tracking the obstacle aims to achieve the state 𝓐𝑘 

of the circle representing an obstacle in real time for realizing 

the avoidance. The state includes the position, the radius, the 

velocities, the changing rate of the radius and the obstacle 

identification(ID).  All the parameters in the state are updated 

at the same time. Hence, in parallel with the assigned obstacle, 

the parameters of the circle are conveyed to the avoidance 

 

Figure 5.  Eight different cases of robotic avoiding many obstacles spawn in random locations. The thick red curves represent the trajectories of the mobile robot 
avoiding obstacles deployed by the system randomly; spheres, cubes and cylinders with different colours denote obstacles; the yellow areas are detected by the 
robot’s lidar.   
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system. 

 

IV. EXPERIMENTS AND DISCUSSIONS 

Here we evaluate the proposed avoidance strategy 
quantitatively and qualitatively. The performance of the 
proposed method is compared against one benchmarking 
obstacle avoidance approach that is a standard solution (TEB 
local planner + cost-map converter) in ROS in simulated 
scenarios (A); the case of robotic avoidance experiments in 
real-word environments (B).   

   The simulations and real experiments of avoiding obstacles 
are implemented on a Turtlebot-2 mobile robot with two 
wheels and a Hokuyo 2D laser scanner.  The measurement 
distance is up to 20 meters and the sampling rate is 100 
milliseconds and the angular resolution is 0.36o for the used 
laser scanner. Indeed, the thresholds 𝑇𝑑 , 𝑇𝑁 , and 𝑇𝑚𝑎𝑥   are 
determined experimentally according to the specific 
environment and the characteristic parameters of the 2D laser 
scanner.  For instance, if the surrounding environment is small, 
we need to make 𝑇𝑚𝑎𝑥  smaller.  

A. Simulation Experiments 

Simulation serves to create highly repeatable and consistent 

test conditions for evaluating a variety of avoidance 

implementations. To verify that the proposed algorithm is 

robust with dynamic layouts and obstacles, we conduct a lot of 

simulations with the open-source simulation platform-Gazebo. 

We locate obstacles along the path defined by 3 setting goals 

for (1) and 1 setting goal for (2). Before the simulation, we first 

run the SLAM algorithm [29] around the built environment to 

construct a global map.  For every instantiated scene, we 

initialize the navigation pipeline with the detection-tracking 

algorithm and TEB local planner. The objective of each task 

for the robot is to simply move from the initial position to the 

destination without crashing. 

1) Avoiding new static and dynamic obstacles  

   (A)The first group of navigation tests is conducted in a 

simulated environment that involves positioning obstacles in a 

z-shape area.  The robot’s goal is to travel 22 meters along the 

z-shape. The number of obstacles spawned is set to 3 and 6. 

For each quantity of obstacles, 50 trails are created. The two 

test environments are depicted in Fig.4, one sparsely-

populated scene and one more densely-populated scene with 

more diverse obstacle categories. The trajectory visualizations 

show in detail that the robot completes the avoidances 

successfully without collisions. Figure 4 records the dynamic 

trajectories of the mobile robot when it is operating around 

many obstacles. The participants traverse these areas with 

similar topology during each navigation route almost.  

   (B)The practical relevance of the complex trials is to enable 

the navigation of avoiding obstacles in crowded environments, 

where new obstacles are unpredicted. There are 50 trial scenes 

with randomly spawned obstacles. To increase the difficulty 

of the scenario, we add more new obstacles in a fixed spawn 

zone on the original map than before, thereby increasing the  

density of the “obstacle forest”. For each area (top, middle and 

bottom areas), we put 6 new obstacles randomly. Figure 5 

shows some examples of a robot avoiding a variety of 

obstacles spawn randomly in the z-shape area.  The proposed 

system can enable a robot to achieve 96% successful rate of 

avoiding obstacles in such complex scenarios.  

(C)As shown in Fig.6, these simulations are intended to 

evaluate the system’s ability to avoid the dynamic obstacle in 

complex environments. The robot confronts one dynamic 

obstacle in the form of one person stepping into the way of the 

robot and several new obstacles (standing persons) that do not 

belong to the known map in the course. This is important as 

any realistic scenario always contains some forms of dynamic 

obstacles. We set the velocities of the robot and the walking 

person as 0.75m/s and 0.5m/s respectively.  

   Most of the trajectories of the robot include moderate 

serrations since there are new obstacles on the pathways. We 

conduct 50 simulations. The robot reaches the destination 

successfully and correctly responds to the turns and new 

dynamic or static obstacles, except 3 cases that the robot stops 

before the walking person and has collisions with the walking 

person.   

    Here we present an experimental case. For instance, a series 

of snapshots in Fig.6 shows the robot involved in this 

simulation can realize the dynamic avoiding obstacles via the 

proposed avoidance algorithm. The robot bypasses the 

walking person safely and also avoids several standing persons 

successfully on the robot.  

 

Figure 6.  Snapshots of robotic avoiding the dynamic walking person and static persons.  
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2) Performance comparison against the baseline system 

in dynamic scenarios 

 Figure 7 illustrates several simulation scenarios where a 

mobile robot needs to avoid a moving obstacle and attempts to 

arrive at the destination by a baseline avoidance strategy (TEB 

local planner + cost-map converter) in Fig.7(D-E-F) and the 

proposed strategy (TEB local planner + detection-tracking 

algorithm) with different obstacle’s speeds from 0.4m/s to 

1.2m/s with the 0.1m/s interval in Fig.7(A-B-C). Initially, the 

obstacle locates on the right side and the mobile robot stands 

at the left side in the simulation. Additionally, the goal is set at 

the right side of the obstacle so that the obstacle is located 

between the initial and final positions of the robot. Then, the 

moving obstacle moves towards the left direction while the 

robot moves toward the goal. Sequentially as it approaches the 

obstacle, the avoidance performance is executed. We evaluate 

the results with cases where the avoidance is successful by 

allowing the robot to execute its motion to the destination 

within the setting time(30s). In simulation environments, if the 

robot has a collision with the obstacle, the execution time will 

be beyond the defined time.  We declare failure if the robot 

does not arrive at the destination or use more than the setting 

time to complete. For each method with each speed of the 

obstacle, we simulate 200-time experiments of dynamic 

avoidances.    

The avoidance process is clearly illustrated in Fig.7.  The 

circles represent the footages of both the mobile robot and the 

moving obstacle respectively at the constant interval 0.2s in 

this figure. The distance of the centers of two successive 

circles indicates the velocity scale. That is, if this distance is 

big, the velocity is big, vice versa. From Fig,7, we can see that 

the velocity of the mobile robot decreases significantly when 

it avoids the heading obstacle. It can be seen that the 

trajectories of Fig.7(A-B-C) are smoother than the cases of 

Fig.7(D-E-F) in terms of the same velocity.  

    As for the cases of Fig.7(A-B-C), their linear, angular 

velocities and orientations are shown in Fig.8(A-B-C) for the 

proposed avoidance system respectively. Similarity, Fig. 8(D-

E-F) also shows the linear, angular velocities and orientations 

of the cases of Fig.7(D-E-F).  Although the linear velocity has 

  

Figure. 7. The motion trajectories with the proposed approach(A,B,C) and the standard method (D,E,F). The velocity of the robot is 0.7m/s while the moving 
obstacle velocity has three values 0.4, 0.8 and 1.2m/s.   

  

Figure. 8. The linear, angular speeds and the orientations with the proposed approach(A,B,C) and the standard method(D,E,F) for the cases of Fig. 7.  
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drastic impulses during the avoiding period, the motion 

remains almost smooth for the proposed avoidance system. 

With the linear speed of the obstacle increasing, the velocity 

of the mobile robot generally maintains the original value for 

the successful avoidances. It indicates that the proposed 

method is robust with the speed of the obstacle lower than 

1.2m/s.  Moreover, the angular velocity for the successful case 

is relatively smooth.  In Fig.7(C-1, D-1, D-2, E-1, E-2), the 

robot and the obstacle have some collisions when they meet 

each other. The curves as shown in Fig. 8(A-B-C) have few 

sharp points at all the time. However, the curves as shown in 

Fig. 8(D-E-F) have a lot of sharp points.  In terms of robot’s 

orientations, the robot performs many turning actions if the 

robot and the obstacle have a collision.  

The results of two systems are generated by varying the 

speed of the moving obstacle from 0.4m/s to 1.2 m/s. The 

proposed avoidance strategy realizes 91.12% successful rate 

of avoiding obstacles. The proposed method outperforms the 

baseline system by a significant margin (40.5%). This is 

somewhat expected since the baseline avoidance method 

always cost much computational resource to recognize the 

obstacles and is not working in real time. The proposed 

method allocates each track’s frame of reference to be attached 

rigidly to the obstacle. Dynamic obstacles are approximated to 

cylinders and handled differently to static ones. As a result, as 

for the dynamic avoidance, the effectiveness of the proposed 

method is better than that of the baseline avoiding strategy in 

ROS. This illustrates that the proposed avoidance strategy 

works very well in such environments.   

B. Real Experiments 

 Lastly, we implement the proposed avoidance system on a 

mobile robot called Turtlebot-2 equipped with a 2D laser 

scanner. Given a goal and a known starting position, the robot 

tends to navigate through obstacles. A chair pushed by a 

person is moving forward as one dynamic obstacle. Figure 9 

mainly shows the spatial evolution of detected and tracked 

obstacles in the human-robot involved scenario over a period 

of time. The robot first moves along the global path and only 

detects static obstacles. After a few seconds, a chair pushed by 

a person appears in the view of 2D lidar and is heading to the 

robot.  The tracking algorithm based on KF reasonably 

estimates the obstacle’s state by the iterations with 

measurements.  The person continues moving towards the 

robot at around 0.5 m/s. The robot changes its direction to 

another side and then, passes through this chair successfully.  

 

C. Discussions 

 The baseline (TEB local planner + cost-map converter) 

which does directly represent obstacles as geometric 

primitives including points, lines, polygons is widely used for 

robotic navigation.  However, once a large number of 

geometric primitives are involved, the baseline algorithm is 

generally considerably higher computational demand since 

huge parameters need to be addressed.  Allowing for the 

limited computation power and real-time requirement, such a 

strategy is not available to handle fast-evolving scenarios 

where a mobile robot and moving obstacles “co-exist”.   In 

contrast, the proposed approach can realize a better avoidance 

performance.  The proposed method processes the laser-point 

cloud for obtaining line segments and circles as consistent and 

meaningful representations of detected obstacles, which 

enormously reduces the computational resource. The 

corresponding reasons are twofold. First, in the geometric 

complexity, the lines and circles used for modeling the 

detected obstacles are just represented by four parameters and 

three parameters respectively. However, the compared 

baseline usually considers a polygon with at least six 

parameters as an obstacle. Second, in terms of quantitative 

terms of geometric primitives, a line segment with two points 

and a circle with one three parameters replace a lot of points, 

polygons to represent obstacles. Moreover, the laser scan is 

first processed with the segmenting, merging and classification 

algorithm described above, which significantly reduces the 

parameters to be solved. The proposed hierarchical data 

association integrated with an independent KF can improve the 

obstacle tracking accuracy by greedily assigning each 

observed geometric model. Integrating TEB local planner into 

the proposed detection-tracking algorithm, we enable the robot 

to realize dynamic avoidances. However, there is a challenge 

for the proposed avoidance perception strategy in 

understanding critical semantic information from a sliced 

sample of the world captured by a 2D scanner. 

The dynamic avoidance is very complicated. The good 

dynamic avoidance system does not only require a robust 

perception system based on visual or laser sensors, but also 

needs suitable robotic control, localization, local and global 

path planners. Thus, a robustly dynamic avoidance requires all 

the sub-systems have good performances. 

   To evaluate the dynamic avoidance performance of the 

proposed strategy, we set relatively simple real experiments in 

cluttered real environments. Indeed, in practical scenarios, the 

dynamic avoidance strategy costs much computational 

 

Figure. 9. Snapshots of dynamic avoidance. 
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resource and thus, the performance is also limited by the 

computing power of a personal computer(PC), especially in 

cluttered surrounding environments. To solve this issue, we 

use a local PC to process the algorithm and send the commands 

to the robot by wireless; however, with a long distance 

between the local PC and the robot, the communication leads 

to a delay as well.  It is well known that ROS structure cannot 

be in real time, which causes that we have to use a highly 

efficient perception system to relieve the communication delay 

in the ROS structure.   

     Moreover, there are two potentially complex dynamic 

avoidance experiments. In particular, a person walks through 

the line of the robotic heading direction, most cases are that 

the robot suddenly stops and then, continues moving without 

changing the direction after the person goes away. If the person 

stops before the robot, the robot stops and then, turns to 

continue moving. But actually, these two examples cannot 

show the performance of dynamic avoidance because 

generally, the robot does not need to configure the dynamic 

avoidance strategy and still can stop before an obstacle and 

update to a new trajectory. The spirits behind the set 

experiment with both a person and a robot face-to-face 

walking in the same line are twofold. First, if the robot cannot 

precisely track the dynamic person to obtain the position using 

the proposed perception algorithm, the robot would stop or 

have a collision with the person. Equipped with the proposed 

dynamic avoidance strategy, the robot keeps moving to the 

target point while tracking by updating the paths in real time. 

Second, due to face-to-face moving in the same line, the robot 

must turn a more angle to avoid the dynamic person. 

Otherwise, the robot just needs to rotate a small angle to avoid 

the obstacle when they are in different lines, in this case, it 

cannot illustrate an obvious avoidance performance. 

V. CONCLUSION 

In this paper, we presented a novel avoiding strategy combined 
with the TEB local planner for realizing dynamic obstacle 
avoidance. We performed the simulations and real 
experiments to demonstrate the capabilities of the proposed 
avoidance system on the detection and tracking of obstacles in 
real time. Also, these experiments illustrated that the proposed 
system is robust and responsive to clutter environments. In the 
future, we will combine the 3D perception solution to 
recognize the obstacles represented directly by full 3D models 
to improve the capability of the robot navigation.  
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