
IEEE TRANSACTIONS ON MECHATRONICS

Abstract—Avoidance is a necessary capability for a mobile

robot to perform tasks such as delivering obstacles in

household or industrial scenarios. The existing avoidance

strategy based on TEB (Timed Elastic Band) local planner and

cost-map provided by Robotics Operating System(ROS)

cannot realize the excellent performance when a robot and an

obstacle both move. In this work, we present a real-time，
simple and reliable approach to detecting and tracking

obstacles via a two-dimensional (2D) lidar in dynamic

scenarios where the mobile robot and the obstacle are moving.

Obstacles are represented by a set of points against their

outlines and the information of obstacles is initialized and

updated via the raw laser measurement. First, the obstacle is

detected by three main steps: pre-processing, segmentation

and merging, classification of consequent measurements.

Second, we use a hierarchical method to realize data

associations for figuring out the corresponding matches

among obstacles with the consecutive time. Last, after doing

the data association, we need to estimate the motion of the

dynamic obstacle for being tracked by the Kalman filter.

Extensive experiments performed in the simulation and

practical scenarios indicate that the proposed method enables

a mobile robot to perform dynamic avoidances efficiently. An

additional video is attached to this work in YouTube,

https://www.youtube.com/watch?v=A2Ad8rNQqYw.

Keywords- Obstacle detection; Obstacle tracking;

Dynamic avoidance; 2D lidar; Mobile robot

I. INTRODUCTION

VOIDING obstacles, a key function of mobile navigation,

poses a typical challenge for mobile robots, for which the

real-time perception is considered as the key bottleneck

because there is a large amount of the environment

information that needs to be processed. The detection and

tracking of participants such as pedestrians and robots play a

crucial role in a safe mobile navigation. A common scenario

involves the autonomous navigation of a mobile robot, in

which a robot is required to detect obstacles and predict the

motion of moving obstacles in unstructured environments, as

shown in Fig. 1. The perception efficiency for dynamic

avoidance yields the limitations of the capability of robots

making decisions such as avoidance actions, especially in

typical human-involved environments with considerable

clutter. Moreover, few of the perception strategies can run in

real time due to a large number of relevant vectors.

 In terms of robotic applications, a perception system

interprets the surroundings using visual cameras and/or laser

scanners[1-6]. Although vision-based perception approaches

have advantages especially in semantic understanding[7], their

major limitations result in high sensitivity to illumination.

Here we consider the 2D point-cloud measurement from a 2D

lidar which is with high resolution, insensitive to lighting

conditions, and just costs less computational resource. There

is a classical avoidance strategy including the timed elastic

band(TEB) local planner[8-10] and the cost-map converter in

ROS[11]. Specifically, the TEB problem is formulated as a

weighted multi-objective optimization framework by dynamic

constraints of the motions. Moreover, the TEB local planner

utilizes a cost-map converter [8-10] to transform occupied

cells of 2D map to a set of convex geometric primitives

(points, lines, polygons) that represent obstacles in the map by

clustering. By integrating the geometric primitives

representing obstacles during the navigation period, the TEB

local planner can avoid obstacles. However, all the obstacles

detected by a mobile robot are also divided into a large number

of geometric primitives considered as obstacles by TEB local

planners, which lead to a considerable computational resource.

Thus, a mobile robot with the TEB local planner has

unsatisfactory performances in avoiding dynamic obstacles.
The target of this work is to achieve safe navigation for a

mobile robot in indoor environments with some pedestrians.
We propose a principled framework for the detection and
tracking of dynamic obstacles by means of one single 2D lidar

A

Real-time Avoidance Strategy of Dynamic

Obstacles via Half Model-free Detection and

Tracking with 2D Lidar for Mobile Robots

Huixu Dong, ASEM/IEEE, Member, Ching-Yen Weng, Chuangqiang Guo, Haoyong Yu, IEEE, Senior

Member, I-Ming Chen, ASME/IEEE, Fellow

Figure 1. Robot avoiding an obstacle based on the proposed algorithm.

 Huixu Dong, Ching-Yen Weng, I-Ming Chen are with Robotics Research

Centre, Nanyang Technological University, 639798 Singapore.
 Chuangqiang Guo(the corresponding author) is with Robotics Institute,

Harbin Institute of Technology, 15000 China(chuangqiang.guo@hit.edu.cn).

 Haoyong Yu is with Bio-robotics Lab, National University of Singapore,

119077 Singapore.

IEEE TRANSACTIONS ON MECHATRONICS

regardless of obstacle classes and shapes, integrating the TEB
local planner to realize obstacle avoidance. The circles with
infinite height and the line are used to be representatives for
modeling the obstacles in the environment. To realize a
collision-free navigation, we approximate the real underlying
model of the obstacle which is deemed acceptable for yielding
a dynamic local map since the obstacle recognition is not our
objective. The motivation of the line and the circle
representing obstacle models is threefold. Firstly, a large
obstacle such as a long wall is represented by a line with just
two endpoints. Secondly, smaller obstacles such as desk legs
or moving persons in practical scenarios are in general
modeled as cylinder-like shapes. Thirdly, the circle model with
three parameters in the 2D space is inexpensive to compute
comparing to occupancy grids. Thirdly, enlarging the
dimension of the cylinder can generate a safe distance between
an obstacle and a moveable robot. As for the pre-processing,
we first use the median filter to discard the noise and segment
the 2D point cloud into independent laser-point cloud blocks
collected by the 2D laser. Then, using geometric primitive
representation, the segmentation is performed on laser-point
cloud blocks, followed by merging (clustering) laser-point
cloud blocks with small distances. Further, all the detected
obstacles are modeled as lines and circles. Despite a higher
computation resource, we indicate that some online
calculations can still be completed. Finally, we utilize a
hierarchical data association strategy based on Kalman Filter
(KF) to estimate the motions.

We aim to achieve a better avoidance strategy by the
proposed obstacle detection and tracking algorithm when the
mobile robot and the obstacle are moving. However, the
robotic navigation is a systemic work, not only combining the
perception system but also integrating the robotic control[12],
planners[13] and localization[14]. In this work, the simple
designed controller based on a differential kinematic model is
used for driving a two-wheel mobile robot. The global planner
in ROS is integrated into the robotic navigation system for

planning a global path and a particle filter-based adaptive
Monte Carlo localization (AMCL) is adopted for tracking
the robot’s pose in a known map extracted from 2D data.

We organize the paper as follows. After reviewing existing

methods in section II, we introduce the core concept of

detecting and tracking dynamic obstacles in detail in section

III. The performance of the proposed avoidance strategy is

evaluated by abundant experiments in section IV. Finally, the

conclusion is made in section V.

II. RELATED WORK

There exists a vast amount of research works regarding the

problem of detection and tracking of multiple dynamic

obstacles.

In terms of describing the surrounding environment, these

existing lidar-based approaches can mainly be classified into

two categories in detail: 1) grid-based [15, 16] and 2) vector-

based [3] methods. Most of approaches apply the 2D or 3-

dimensional(3D) occupancy grid (grid-based) to represent

environments [17]. In particular, the occupancy grid in a map

is divided into spaced cells and then complex geometries are

used for representing obstacles for detecting and tracking

obstacles. For example, the grid trajectories features were

applied to detecting dynamic obstacles in [18]. Another

commonly used representation of the environment, the vector-

based method, incorporates simple and higher-level

predefined geometric features such as line segments, circles,

ellipses and rectangles, boxes to directly model obstacles

in[19-21]. Therefore, obstacles described by geometric

features can be expressed via the pose(position and orientation)

of the geometric feature. In comparison to the first category,

the vector-based approach with the compact representation of

the surrounding environment is particularly suitable for

describing a sparse scenario due to the low memory

consumption. Our work concentrates on the obstacle detection

and tracking by 2D vector-based representatives.

The dynamic obstacle avoidance system involved by the

perception prediction and path planning is modifying and

estimating the pose of a moving robot in real time such that the

robot is able to avoid collisions with moving obstacles found

on its path. There are several classical methods such as virtual

force field(VFF) [22, 23], vector field histogram(VFH) [24],

dynamic window approach(DWA) [25]and TEB approaches[8,

9, 26]. In terms of VFF [22, 23], the histogram grids are

applied to representing the area through which the robot can

pass. However, such a method is not available when the mobile

robot and moving obstacle close to each other generate the

repellent effect. To address such an issue in VFF, Borenstein

et al.[24] presented the VFH method that employs the 2D

histogram grid to describe the surroundings for obtaining a

one-dimensional polar histogram constructed around the

momentary location of the robot. In contrast to VFF and VFH

methods, DWA was developed to avoid obstacles by means of

defined cost functions based on the constraints of mobile

robots [25] on the kinematics and dynamics. The elastic band

based method can adapt to dynamic path changes by adjusting

the path to generate a new once a new obstacle is detected [26].

III. METHODOLOGY

In the section, we first introduce how to detect obstacles
(A). Then, the details of tracking obstacles are described (B).

A. Obstacle Detection

1) Pre-processing

 A set 𝒑 with 𝑁 measurement points is from a lidar scan.
We represent each raw point 𝑝𝑖 in 𝒑 in the form of Polar
coordinates (𝑅𝑖, 𝜃𝑖) as follows,

𝒑 ≜ {𝑝𝑖 = (𝑅𝑖 , 𝜃𝑖)}, 𝑖 ∈ [1, 𝑁] (1)

 The accuracy of measurements is disturbed by the noise.
The outliers may lead to such a situation where some
measurement points fail to represent an obstacle as they may
be unstable or noise points in practical environments. A range
filter is integrated into the proposed algorithm to remove
useless points with invalid values represented by NaN or
beyond the range. A 3 × 3 median filtering matrix is applied
to smoothing the 2D point data. The distance of a point 𝑖 from
a laser scan as 𝑅(𝑡,𝑖) at the current time 𝑡 . Thus, the 3 × 3

median matrix used for filtering out some points is given as
follows:

IEEE TRANSACTIONS ON MECHATRONICS

[

𝑅(𝑡−1,𝑖−1) 𝑅(𝑡−1,𝑖) 𝑅(𝑡−1,𝑖+1)

𝑅(𝑡,𝑖−1) 𝑅(𝑡,𝑖) 𝑅(𝑡,𝑖+1)

𝑅(𝑡+1,𝑖−1) 𝑅(𝑡+1,𝑖) 𝑅(𝑡+1,𝑖+1)

] (2)

 We use the median of the 9 elements in the median filter as
the distance between the laser point 𝑖 and the laser mounted on
the robot at the time t for discarding noise points in
consideration of the space and time, reducing the complexity
and increase accuracy of the obstacle classification.

After filtering out the noise points, we segment a large laser-

point cloud into independent small laser-point cloud blocks in
order. For each laser-point cloud block, the starting point
index satisfies 𝑅𝑖−1 = 0 and 𝑅𝑖 ≠ 0 . Moreover, the ending
point index satisfies 𝑅𝑖 ≠ 0 and 𝑅𝑖+1 = 0, as shown in Fig.
2(A).

2) Segmentation and merging

All laser points are segmented into point-cloud blocks that

have strong correlations based on practical properties. There

exist two main segmentation types for the point cloud

measured via a lidar such as the complete segmentation and

the partial segmentation. The complete segmentation means

one obstacle is considered as one single segment. In terms of

the partial segmentation, one obstacle can be characterized by

two or more segments (e.g. human legs). In this work, we

work on the partial segmentation. In practical environments,

some large segments, such as walls, are usually interrupted by

small intervals, which results in a wrong case that one obstacle

is represented by more than one segment. It is obvious that the

density of measurements gradually decreases in the lidar data

and the layout of points becomes sparse as the measured

distance increases (see Fig.2-A). Here we use the distance of

two endpoints of the small interval to determine the

segmentation.
 For segmenting the data after filtering, we first determine the
distance 𝑑 between the two sequential measurement points 𝑖
and 𝑖 + 1 defined in the polar coordinate.

𝑑(𝑅𝑖 , 𝑅𝑖+1) = √𝑅𝑖
2 + 𝑅𝑖+1

2 − 2𝑅𝑖𝑅𝑖+1 cos ∆𝛼 (3)

where 𝑅𝑖 and 𝑅𝑖+1 represent the measurement distances of the
points 𝑖 and 𝑖 + 1. ∆𝛼 denotes the resolution angle of the lidar.
If 𝑑 is bigger than 𝑘𝑊 , the laser-point cloud block is
segmented into two small blocks, as shown in Fig.2(B). 𝑊
denotes the width of the robot and 𝑘 is the setting dynamic
amplification factor as follows

{
𝑘 =

𝑊∙𝑅𝑖∙𝑅𝑖+1

100(𝑅𝑖+𝑅𝑖+1)
,

𝑅𝑖+𝑅𝑖+1

2
> 𝑇𝑑;

𝑘 = 0.15, 0 <
𝑅𝑖+𝑅𝑖+1

2
≤ 𝑇𝑑 .

 (4)

where 𝑇𝑑(𝑇𝑑=10) is a threshold of the measured distance. We

define the dynamic amplification factor 𝑘 to adjust the

distance threshold between the two adjacent points with the

width of the robot and the measured distance changing. For

example, as the measured distance increases, the distance

between two adjacent lidar points also becomes larger. We

increase the threshold to reduce the number of segments.

Moreover, if the robot width is large, the small gap with a

small distance between the two adjacent points tends to merge

together so that the robot cannot go through the gap and reduce

the number of segments in the long distance.

The merging processing needs to be done for some laser-

point cloud blocks. As shown in Fig. 2(C), 𝐿 is the space

distance between the termination point of the first point set

with the index value 𝑝 and the starting point of the last point

set with the index 𝑞 . This connection can be done if the

following condition is met. The robot cannot pass the narrow

gap if 𝐿 is smaller than 𝑊: 𝐿 < 𝑊. The enhancement of the

algorithm involves the combination of two segments separated

by a small interval. In this case, these two laser-point cloud

blocks are merged into one laser-point cloud block, as shown

𝑊

𝑅
𝑖

𝑅𝑖+1

𝑅𝑖−1

𝑅𝑖

𝑂𝑙

Block 1

Block 2

𝑑1

𝑑2

Starting point

Starting point

Ending point

𝑑1 < 𝑑2

∆𝛼

𝑅𝑖

𝑅
𝑖+

1

𝑑(𝑅𝑖 , 𝑅𝑖+1)

Robot

Robot

Ending point

𝑅𝑖

Robot

Point-cloud block

Sub-block 1

Sub-block 2

Block 1
Block 2

𝑂𝑙
𝑂𝑙

𝑊 𝑊

𝐿

CB

A

𝑝 𝑞

𝑅𝑝 𝑅𝑞

Block 1 Block 2

Figure 2. Segmenting the laser-point cloud into independent laser-point
cloud blocks(A), segmenting one block into two small blocks (B) and
merging two blocks into one blocks(C). 𝑑1 or 𝑑2 is the different of two
points, on the two laser rays, with equal distance to the laser origin 𝑂𝑙;
𝑅𝑖 represents the distance of the point 𝑖; 𝑑(𝑅𝑖, 𝑅𝑖+1) denotes the distance
the two sequential measurement points; 𝐿 indicates the distance between

the termination points of two adjacent laser-point cloud blocks; 𝑊

represents the width of the robot; the red dots are the laser points.

𝑂𝑙

𝐷𝑚𝑎𝑥

𝑝

𝑞

𝑆

𝐷𝑚𝑎𝑥

𝑆

𝑝

𝑞

𝑂𝑙

𝐷𝑚𝑎𝑥

𝑆

𝑝

𝑞

𝑂𝑙

𝑆

𝑝

𝑞

𝐷𝑚𝑎𝑥

𝑂𝑙

A B C D
Figure 3. Classification of segments. The two points with the starting

index 𝑝 and the ending index 𝑞 in a laser-point cloud block; 𝑆 denotes the

distance between 𝑝 and 𝑞 ; 𝐷𝑚𝑎𝑥 represents the maximum one among

distances from points on the laser-point block to the line segment formed

by 𝑝 and 𝑞; 𝑂𝑙 is the laser origin; the dashed rectangles cover all the laser

points and the red dots are the laser points.

IEEE TRANSACTIONS ON MECHATRONICS

Algorithm 1: Splitting segments into subsets

Data:

𝑁 ← The number of measurement points in the point-cloud block

𝐵 ≜ {𝑝𝑖 }, 𝑖 ∈ [1, 𝑁];
𝑇𝑛 ← The threshold;

𝐷𝑚 ← The maximum value of the distances between each point and

the line fit by two endpoints;

S ← the distance between two endpoints;

𝑉𝑟𝑒𝑠𝑢𝑙𝑡 ← the vector storing the point-cloud block with 𝑁 less than

𝑇𝑛;

𝑉𝑐 ← the vector storing the point-cloud block with 𝑁 more than 𝑇𝑛;

𝑁𝑐 ← the number of elements in 𝑉𝑐;

𝑁𝑐0 ← the number of points in 𝑉𝑐[0];

 Put 𝐵 into 𝑉𝑐
1 While (𝑁𝑐 ≠ 0) do
2 If (𝑁𝑐0 > 𝑇𝑛)
3 Calculate 𝐷𝑚 of 𝑉𝑐[0] and get 𝑝𝑘 that corresponds to 𝐷𝑚
4 If (𝐷𝑚𝑎𝑥 > 0.2|𝑆|)
5 Split 𝑉𝑐[0] into 𝐵1(𝐵1 ≜ {𝑝1, 𝑝2, … , 𝑝𝑘})

 and 𝐵2(𝐵2 ≜ {𝑝𝑘 , 𝑝𝑘+1, … , 𝑝𝑁𝑐0
})

6 If (𝑘 > 𝑇𝑛)
7 Put 𝐵1 into 𝑉𝑐

8 Else

9 Put 𝐵1 into 𝑉𝑟𝑒𝑠𝑢𝑙𝑡

10 If (𝑛 − 𝑘 + 1 > 𝑇𝑛)

11 Put 𝐵2 into 𝑉𝑐

12 Else

13 Put 𝐵2 into 𝑉𝑟𝑒𝑠𝑢𝑙𝑡

14 Delete 𝑉𝑐[0]
15 Else

16 Delete 𝑉𝑐[0]
17 Else

18 Delete 𝑉𝑐[0] in 𝑉𝑐

19 Put 𝑉𝑐[0] into 𝑉𝑟𝑒𝑠𝑢𝑙𝑡

20 End

Output: 𝑉𝑟𝑒𝑠𝑢𝑙𝑡

in Fig.2(C). Also, we compensate the corresponding values to

those laser points between 𝑝 and 𝑞 for making the two

combined point sets spatially continuous. In order to

determine the number 𝑁 of the compensated points, we

calculate the average distance 𝑑𝑎𝑣𝑒𝑟 of the adjacent points of

two point-cloud blocks and then, 𝑁 =
𝐿

𝑑𝑎𝑣𝑒𝑟
. The distances of

2D points 𝑝 and 𝑞 is 𝑅𝑝 and 𝑅𝑞 respectively, thus the

distance of the compensated point 𝑖 is represented as follows,

𝑅𝑖 = 𝑅𝑝 + 𝑖 ∙
𝑅𝑞−𝑅𝑝

𝑁
. (5)

3) Classification

 By segmenting and merging, the point cloud coming from a

laser consists of independent point sets (point-cloud blocks).

The basic idea of classification is to describe any obstacle via

a set of simple shapes[27]. The point-cloud block can be

formulated as two basic shapes such as the circle, liner

segment. The approximation of the point-cloud blocks based

on these geometric models has two major advantages. First, a

number of discrete points used for representing any obstacle

are replaced by just inexpensive parameters such as position

and radius, which simplifies computing. Second, such

averaging effect for describing the model can be robust to cope

with the measurement noise. Although such an approximation

may result in unnecessary loss of motion space of the mobile

robot. Indeed, as our main target is to realize a safe dynamic

navigation rather than the obstacle recognition, the real

underlying model of the obstacle can be approximated is

deemed acceptable.

 To store the obstacles for further processing, we build a set

of obstacles as 𝕆, 𝕆 ≜ {𝕃, ℂ}. 𝕃 denotes a set of line-type

obstacles and ℂ represents a set of circle-type obstacles.

 (1) If the number of points of a point set is more than a

predefined threshold 𝑇𝑁(𝑇𝑁 = 10), we first use a line segment

to connect the starting point 𝑝 and the ending point 𝑞 and then,

calculate the maximum value 𝐷𝑚𝑎𝑥 of distances from each

point to the line segment, as illustrated in Fig. 3. If 𝐷𝑚𝑎𝑥 <
0.2|𝑆|, this point-cloud block will be fit to a line segment with

two endpoints 𝑝 and 𝑞(see Fig.3-A).

If 𝐷𝑚𝑎𝑥 > 0.2|𝑆|, the point-cloud block can be split further.

The corresponding algorithm is shown in Algorithm 1. We

recursively repeat this procedure for each new subset. When

the number of points in a new subset is less than 𝑇𝑁 , the

splitting stops.

(2) When the number of points in the point-cloud block is

less than 𝑇𝑁, we utilize a circle to represent this point-cloud

block with a relatively small size. There are two main reasons.

First, if the size of point-cloud segments is very large (e.g.

corridor walls), the circle extracted from such a segment would

cause that an obstacle covers a vast area of the workspace. The

circle representative is suitable for a point-cloud block with a

small size. Second, indeed, the size of a dynamic obstacle (e.g.,

humans) is far less than that of static obstacles (e.g., walls) in

indoor environments.

 To determine the radius of the circle extracted from a point-

cloud block, we first use the method stated above to fit the

point set. When the point-cloud block satisfies 𝐷𝑚𝑎𝑥 < 0.2|𝑆|,
the midpoint of line segment connected by two endpoints is set

as the center and the distance between the center and the

maximum-distance point is the circle’s radius (see Fig.3-B).

Otherwise, we first need to determine the convexity or

concavity of the point-cloud block since the parameters of the

circle extracted from a point-cloud block depend on the

convexity or concavity.
Here we propose a highly efficient algorithm to determine

the convexity or concavity of the point-cloud blocks based on
the vector cross product, as shown in Algorithm 2. We first
take the two endpoints of the segment and then, obtain the
midpoint of them, considering the midpoint as the center of the
estimated shape. Further, the distance from the center to each
point of the segment is calculated so that the maximum one
among these distances is extracted. Lastly, this maximum
distance serves as the circle’s radius.

 In order to realize a free collision between a robot and an
obstacle, the radius of the circle is enlarged by a margin value

defined as a safe distance, as shown in Fig.3(blue circles). If
this segment is concave, the zone of the triangle formed by two
endpoints of the segment and the origin of the lidar is free for
the mobile robot (Fig.3-C). While if the segment is convex,
the zone between the origin of lidar and the nearest point from
the lidar to the segment is safe. The robot can move at the safe
zone (Fig.3-D). All the point-cloud blocks represented by
circles are added to the set ℂ.

B. Obstacle Tracking

We implement a simple Kalman filter[28] into the proposed
system, allowing for the tracking of circular obstacles. The

IEEE TRANSACTIONS ON MECHATRONICS

detailed tracking algorithm is described in this section.
Specifically, we introduce how any dynamic obstacles with
any shape to be modeled such as to be tracked. In terms of
tracking new dynamic obstacles, the state initialization is non-
trivial due to the motion arbitrariness and independent of each
other. New dynamic obstacles can be initialized by the system
and put into new track containers while static obstacles need
to be merged into the static background for achieving dynamic
tracks. After initializing a new track, we put it into the set of
existing dynamic tracks if it is continuously detected more
than predefined times; otherwise, this track will be discarded.

1) Hierarchical data association

A) Coarse-level data association

After classing the measurements from a lidar scan, the

point-cloud segment (point set) is then assigned to the static

background or a dynamic obstacle recursively. The target of

the data association is to figure out which detected obstacle

taken at the last time interval 𝑡 − 1 corresponds to which

detected obstacle captured at the current time interval 𝑡(Note

that 𝑡 − 1 represents the last time interval rather than the time

before 1 second). Specifically, to track obstacles, two-point

sets 𝑃 and 𝑄 detected at different time intervals are aligned.

The global nearest-neighbor search algorithm is applied to

finding the “best” fits for the existing tracks. If no

correspondences are found for some point sets, then these

point sets are considered as new tracks and are initiated by the

Kalman filter. The new point set 𝑃 is associated with its

nearest neighbor 𝑄 if the Euler distances of their positions and

radii are within two thresholds (5 and 3) respectively;

otherwise, it is considered as a new point set to be tracked.

First, obstacles detected at 𝑡 − 1 are considered as old

obstacles, and obstacles detected at 𝑡 are regarded as new

obstacles. Then, we obtain the distances between each old

obstacle and each new obstacle regarding the positions and the

sizes by a traversing algorithm. Third, for each old/new

obstacle, we ascendingly sort its distances with new/old

obstacles. Thus, corresponding new/old obstacles with

minimum distance to each old/new obstacle are extracted.

Based on the pairing information, two preliminary

correspondence maps including 𝑀𝑛→𝑜 and 𝑀𝑜→𝑛 are

generated. Finally, a preset distance threshold 𝑇𝑚𝑎𝑥(𝑇𝑚𝑎𝑥 =
5) is used in 𝑀𝑛→𝑜 and 𝑀𝑜→𝑛 for removing the

correspondences with distances larger than 𝑇𝑚𝑎𝑥 . We update

these correspondences to the map 𝑀𝑟.

B) Fine-level data association

 Given 𝑀𝑟, the fine level data association can further take

into account the following correlations among observations.

Normally, each detected new obstacle corresponds to only one

old obstacle in the environment. However, in this resulted

correspondence map, there might be that one new/old obstacle

is associated with multiple old/new obstacles. A case example

is human’s legs while walking. These two cases can be

detected by exploring the duplicate correspondences in the

map 𝑀𝑟 . Determination of the correspondence type for

currently examined obstacles provides crucial information in

terms of the state update. The state of a new obstacle is

updated, relying on old obstacles. Any new obstacle is updated

depending on the original obstacle in the second case. All

obstacles involved in these two cases are marked as tracked

ones.
 It is possible that some new obstacles are not associated with
any old obstacle after the data association. These unmatched
point sets are then regarded as new obstacles in the proposed
detection and tracking system. These new obstacles are put
into the dynamic map such as to be initiated and tracked by
KFs. If an obstacle is deemed dynamic, its state is estimated
by KF.

2) Kalman filter

For realizing dynamic avoidance, the perception system

needs to estimate the motion parameters of each moving

obstacle. For tracking obstacles, we utilize Kalman filter[28]

to estimate the states of detected obstacles. Each newly

detected obstacle marked as tracked will be initialized by a

separate filter. For each sample time, the used filter updates

the prediction and the correction steps. The position and size

of obstacles and the rates of change of each variable describing

Algorithm 2: Determine the convexity or concavity of the point-

cloud block

Data:

𝑜𝑙 ← The origin of the lidar;

𝑇𝑖𝑜 ← The threshold;

𝑁 ← The number of measurement points in the point-cloud block

𝐵 ≜ {𝑝𝑖 }, 𝑖 ∈ [1, 𝑁];
𝑉𝑖 ←the vector storing 𝑁𝑖 points inside ∆𝑜𝑙𝑝1𝑝𝑁;

𝑉𝑜 ←the vector storing 𝑁𝑜 points outside ∆𝑜𝑙𝑝1𝑝𝑁;

𝑟𝑖𝑜 ←the ratio of the numbers of points inside ∆𝑜𝑙𝑝1𝑝𝑁 to outside

∆𝑜𝑙𝑝1𝑝𝑁;

Suppose that the order of three points consisting of the triangle

∆𝑜𝑙𝑝1𝑝𝑁 is anticlockwise such as 𝑜𝑙 , 𝑝1, 𝑝𝑁 .
True represents 𝐵 is convex relative to the origin of the lidar;

False denotes 𝐵 is concave relative to the origin of the lidar.

1 While (𝑖 ≠ 𝑁) do

2 Calculate three cross products as follows,

3 𝑇1 = 𝑝𝑖𝑜𝑙 ⊗ 𝑝𝑖𝑝1;

4 𝑇2 = 𝑝𝑖𝑝1 ⊗ 𝑝𝑖𝑝𝑁;
5 𝑇3 = 𝑝𝑖𝑝𝑁 ⊗ 𝑝𝑖𝑜𝑙;

6 If (𝑇1 > 0 && 𝑇2 > 0 && 𝑇2 > 0)
|| (𝑇1 < 0 && 𝑇2 < 0 && 𝑇2 < 0)

7 Put 𝑝𝑖 into 𝑉𝑖

8 Else

9 Put 𝑝𝑖 into 𝑉𝑜

10 End

11 𝑟𝑖𝑜 =
𝑁𝑖

𝑁𝑜
;

12 If (𝑟𝑖𝑜 > 𝑇𝑖𝑜)

13 True;
14 End

15 False.

Output: True or False

Figure. 4. Simulation tests in the z-shape area with different placements

of 3(left side) and 6(right side) obstacles, respectively.

IEEE TRANSACTIONS ON MECHATRONICS

the obstacle’s state are estimated for realizing the safe

navigation of a mobile robot in the 2D environment. We

denote a vector including detected obstacles as 𝓐𝑡 at the time

instant 𝑡. This vector is provided as follows:

𝓐𝑡 = {𝒜𝑡
𝑖 }, 𝑖 ∈ [1, 𝑛], 𝑛 ≥ 1 (6)

where

𝒜𝑡
𝑖 = [𝑥𝑡

𝑖, �̇�𝑡
𝑖 , 𝑦𝑡

𝑖 , �̇�𝑡
𝑖, 𝑟𝑡

𝑖 , �̇�𝑡
𝑖 , 𝐼𝑡

𝑖]
𝑇

and 𝑛 represents the number of obstacles in an environment.

Eq. 6 illustrates the state of the 𝑖 th obstacle, with 𝑥𝑡
𝑖 and 𝑦𝑡

𝑖

being the position of the obstacle, 𝑟𝑡
𝑖 the circle radius, �̇�𝑡

𝑖 and

�̇�𝑡
𝑖 the linear velocities, and 𝐼𝑡

𝑖 the index of the obstacle. Due to

the invariance of the index of the obstacle, we omit the

parameter in the equations. With such a definition of the state

vector, we present the track state transition modeled:

𝒜𝑡+1
𝑖 = 𝐹𝒜𝑡

𝑖 + 𝐺𝑤𝑡 (7)

𝐹 is expressed as follows:

𝐹 = [
𝐴 0 0
0 𝐴 0
0 0 𝐴

] with 𝐴 = [
1 𝑠
0 1

] (8)

𝑠 is the length of a sampling period. 𝐺 represents the noise

gain matrix, which is expressed as follows,

𝐺 = [
𝐵 0 0
0 𝐵 0
0 0 𝐵

] with 𝐵 = [
1

2
𝑠2

𝑠
] (9)

The measurement equation can be formulated as follows:

𝑚𝑡+1 = 𝐻𝒜𝑡+1
𝑖 + 𝑣𝑡+1 (10)

where 𝐻 is the measurement model, expressed as:

𝐻 = [
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

] (11)

According to the chosen kinematics model, the process noise

𝑤𝑡 and measurement noise 𝑣𝑡+1 satisfy zero-mean white

Gaussian noise distributions

 𝑝(𝑤)~𝑁(0, 𝑄)

 𝑝(𝑣)~𝑁(0, 𝑅) (12)

Thus, covariance kernels

 𝐸 {𝑤𝑡𝑖
𝑤𝑡𝑗

𝑇} = 𝑄𝑡𝑖
𝛿𝑖𝑗

 𝐸 {𝑣𝑡𝑖
𝑣𝑡𝑗

𝑇} = 𝑅𝑡𝑖
𝛿𝑖𝑗 (13)

where 𝛿𝑖𝑗 is Kronecker delta function. When all of the

parameters are known, the Kalman filtering equations are:

�̂�(𝑡|𝑡)
𝑖 = �̂�

(𝑡|𝑡 − 1)
𝑖 + 𝐾𝑡 [𝑚𝑡 − 𝐻�̂�

(𝑡|𝑡 − 1)
𝑖] (14)

�̂�
(𝑡 + 1|𝑡)
𝑖 = 𝐹�̂�(𝑡|𝑡)

𝑖 (15)

where �̂�(𝑡|𝑡)
𝑖 is the estimate of 𝒜𝑡

𝑖 based on the measurements

{𝑚0, ⋯ , 𝑚𝑡} and �̂�
(𝑡 + 1|𝑡)
𝑖 is the prediction of 𝒜𝑡+1

𝑖 with

the measurements {𝑚0, ⋯ , 𝑚𝑡}. The matrix 𝐾𝑡 is the "Kalman

filter gain" and is determined by

𝐾𝑡 = 𝑃(𝑡|𝑡 − 1)𝐻𝑇 [𝐻𝑃(𝑡|𝑡 − 1)𝐻𝑇 + 𝑅𝑡]
−1

 (16)

where the covariance matrix of the error in predicting 𝒜𝑡
𝑖 is

provided as

𝑃(𝑡|𝑡 − 1) = 𝐸 {[𝒜𝑡
𝑖 − �̂�

(𝑡|𝑡 − 1)
𝑖] [𝒜𝑡

𝑖 − �̂�
(𝑡|𝑡 − 1)
𝑖]

𝑇

} (17)

and 𝑃(𝑡|𝑡 − 1) is computed using

𝑃(𝑡 + 1|𝑡) = 𝐹𝑃(𝑡|𝑡)𝐹𝑇 + 𝐺𝑄𝐺𝑇 (18)

where

𝑃(𝑡|𝑡) = 𝑃(𝑡|𝑡 − 1) − 𝐾𝑡𝐻𝑃(𝑡|𝑡 − 1) (19)

 Generally, one new tracked obstacle corresponds to just one

old obstacle. If a new obstacle maps more than one old

obstacles, we use the average of states of old obstacles to be

that of the new obstacle. When an old obstacle has more than

one corresponding new obstacles, the original obstacle is

copied for each new detected one, and their states are updated

in new information sets.

 The convexity-concavity characteristics of the circle-shape

model are invariant with respect to the distance. However, the

size of the circle is adjusting with the measurement distance

changing. Tracking the obstacle aims to achieve the state 𝓐𝑘

of the circle representing an obstacle in real time for realizing

the avoidance. The state includes the position, the radius, the

velocities, the changing rate of the radius and the obstacle

identification(ID). All the parameters in the state are updated

at the same time. Hence, in parallel with the assigned obstacle,

the parameters of the circle are conveyed to the avoidance

Figure 5. Eight different cases of robotic avoiding many obstacles spawn in random locations. The thick red curves represent the trajectories of the mobile robot
avoiding obstacles deployed by the system randomly; spheres, cubes and cylinders with different colours denote obstacles; the yellow areas are detected by the
robot’s lidar.

IEEE TRANSACTIONS ON MECHATRONICS

system.

IV. EXPERIMENTS AND DISCUSSIONS

Here we evaluate the proposed avoidance strategy
quantitatively and qualitatively. The performance of the
proposed method is compared against one benchmarking
obstacle avoidance approach that is a standard solution (TEB
local planner + cost-map converter) in ROS in simulated
scenarios (A); the case of robotic avoidance experiments in
real-word environments (B).

 The simulations and real experiments of avoiding obstacles
are implemented on a Turtlebot-2 mobile robot with two
wheels and a Hokuyo 2D laser scanner. The measurement
distance is up to 20 meters and the sampling rate is 100
milliseconds and the angular resolution is 0.36o for the used
laser scanner. Indeed, the thresholds 𝑇𝑑 , 𝑇𝑁 , and 𝑇𝑚𝑎𝑥 are
determined experimentally according to the specific
environment and the characteristic parameters of the 2D laser
scanner. For instance, if the surrounding environment is small,
we need to make 𝑇𝑚𝑎𝑥 smaller.

A. Simulation Experiments

Simulation serves to create highly repeatable and consistent

test conditions for evaluating a variety of avoidance

implementations. To verify that the proposed algorithm is

robust with dynamic layouts and obstacles, we conduct a lot of

simulations with the open-source simulation platform-Gazebo.

We locate obstacles along the path defined by 3 setting goals

for (1) and 1 setting goal for (2). Before the simulation, we first

run the SLAM algorithm [29] around the built environment to

construct a global map. For every instantiated scene, we

initialize the navigation pipeline with the detection-tracking

algorithm and TEB local planner. The objective of each task

for the robot is to simply move from the initial position to the

destination without crashing.

1) Avoiding new static and dynamic obstacles

 (A)The first group of navigation tests is conducted in a

simulated environment that involves positioning obstacles in a

z-shape area. The robot’s goal is to travel 22 meters along the

z-shape. The number of obstacles spawned is set to 3 and 6.

For each quantity of obstacles, 50 trails are created. The two

test environments are depicted in Fig.4, one sparsely-

populated scene and one more densely-populated scene with

more diverse obstacle categories. The trajectory visualizations

show in detail that the robot completes the avoidances

successfully without collisions. Figure 4 records the dynamic

trajectories of the mobile robot when it is operating around

many obstacles. The participants traverse these areas with

similar topology during each navigation route almost.

 (B)The practical relevance of the complex trials is to enable

the navigation of avoiding obstacles in crowded environments,

where new obstacles are unpredicted. There are 50 trial scenes

with randomly spawned obstacles. To increase the difficulty

of the scenario, we add more new obstacles in a fixed spawn

zone on the original map than before, thereby increasing the

density of the “obstacle forest”. For each area (top, middle and

bottom areas), we put 6 new obstacles randomly. Figure 5

shows some examples of a robot avoiding a variety of

obstacles spawn randomly in the z-shape area. The proposed

system can enable a robot to achieve 96% successful rate of

avoiding obstacles in such complex scenarios.

(C)As shown in Fig.6, these simulations are intended to

evaluate the system’s ability to avoid the dynamic obstacle in

complex environments. The robot confronts one dynamic

obstacle in the form of one person stepping into the way of the

robot and several new obstacles (standing persons) that do not

belong to the known map in the course. This is important as

any realistic scenario always contains some forms of dynamic

obstacles. We set the velocities of the robot and the walking

person as 0.75m/s and 0.5m/s respectively.

 Most of the trajectories of the robot include moderate

serrations since there are new obstacles on the pathways. We

conduct 50 simulations. The robot reaches the destination

successfully and correctly responds to the turns and new

dynamic or static obstacles, except 3 cases that the robot stops

before the walking person and has collisions with the walking

person.

 Here we present an experimental case. For instance, a series

of snapshots in Fig.6 shows the robot involved in this

simulation can realize the dynamic avoiding obstacles via the

proposed avoidance algorithm. The robot bypasses the

walking person safely and also avoids several standing persons

successfully on the robot.

Figure 6. Snapshots of robotic avoiding the dynamic walking person and static persons.

IEEE TRANSACTIONS ON MECHATRONICS

2) Performance comparison against the baseline system

in dynamic scenarios

 Figure 7 illustrates several simulation scenarios where a

mobile robot needs to avoid a moving obstacle and attempts to

arrive at the destination by a baseline avoidance strategy (TEB

local planner + cost-map converter) in Fig.7(D-E-F) and the

proposed strategy (TEB local planner + detection-tracking

algorithm) with different obstacle’s speeds from 0.4m/s to

1.2m/s with the 0.1m/s interval in Fig.7(A-B-C). Initially, the

obstacle locates on the right side and the mobile robot stands

at the left side in the simulation. Additionally, the goal is set at

the right side of the obstacle so that the obstacle is located

between the initial and final positions of the robot. Then, the

moving obstacle moves towards the left direction while the

robot moves toward the goal. Sequentially as it approaches the

obstacle, the avoidance performance is executed. We evaluate

the results with cases where the avoidance is successful by

allowing the robot to execute its motion to the destination

within the setting time(30s). In simulation environments, if the

robot has a collision with the obstacle, the execution time will

be beyond the defined time. We declare failure if the robot

does not arrive at the destination or use more than the setting

time to complete. For each method with each speed of the

obstacle, we simulate 200-time experiments of dynamic

avoidances.

The avoidance process is clearly illustrated in Fig.7. The

circles represent the footages of both the mobile robot and the

moving obstacle respectively at the constant interval 0.2s in

this figure. The distance of the centers of two successive

circles indicates the velocity scale. That is, if this distance is

big, the velocity is big, vice versa. From Fig,7, we can see that

the velocity of the mobile robot decreases significantly when

it avoids the heading obstacle. It can be seen that the

trajectories of Fig.7(A-B-C) are smoother than the cases of

Fig.7(D-E-F) in terms of the same velocity.

 As for the cases of Fig.7(A-B-C), their linear, angular

velocities and orientations are shown in Fig.8(A-B-C) for the

proposed avoidance system respectively. Similarity, Fig. 8(D-

E-F) also shows the linear, angular velocities and orientations

of the cases of Fig.7(D-E-F). Although the linear velocity has

Figure. 7. The motion trajectories with the proposed approach(A,B,C) and the standard method (D,E,F). The velocity of the robot is 0.7m/s while the moving
obstacle velocity has three values 0.4, 0.8 and 1.2m/s.

Figure. 8. The linear, angular speeds and the orientations with the proposed approach(A,B,C) and the standard method(D,E,F) for the cases of Fig. 7.

IEEE TRANSACTIONS ON MECHATRONICS

drastic impulses during the avoiding period, the motion

remains almost smooth for the proposed avoidance system.

With the linear speed of the obstacle increasing, the velocity

of the mobile robot generally maintains the original value for

the successful avoidances. It indicates that the proposed

method is robust with the speed of the obstacle lower than

1.2m/s. Moreover, the angular velocity for the successful case

is relatively smooth. In Fig.7(C-1, D-1, D-2, E-1, E-2), the

robot and the obstacle have some collisions when they meet

each other. The curves as shown in Fig. 8(A-B-C) have few

sharp points at all the time. However, the curves as shown in

Fig. 8(D-E-F) have a lot of sharp points. In terms of robot’s

orientations, the robot performs many turning actions if the

robot and the obstacle have a collision.

The results of two systems are generated by varying the

speed of the moving obstacle from 0.4m/s to 1.2 m/s. The

proposed avoidance strategy realizes 91.12% successful rate

of avoiding obstacles. The proposed method outperforms the

baseline system by a significant margin (40.5%). This is

somewhat expected since the baseline avoidance method

always cost much computational resource to recognize the

obstacles and is not working in real time. The proposed

method allocates each track’s frame of reference to be attached

rigidly to the obstacle. Dynamic obstacles are approximated to

cylinders and handled differently to static ones. As a result, as

for the dynamic avoidance, the effectiveness of the proposed

method is better than that of the baseline avoiding strategy in

ROS. This illustrates that the proposed avoidance strategy

works very well in such environments.

B. Real Experiments

 Lastly, we implement the proposed avoidance system on a

mobile robot called Turtlebot-2 equipped with a 2D laser

scanner. Given a goal and a known starting position, the robot

tends to navigate through obstacles. A chair pushed by a

person is moving forward as one dynamic obstacle. Figure 9

mainly shows the spatial evolution of detected and tracked

obstacles in the human-robot involved scenario over a period

of time. The robot first moves along the global path and only

detects static obstacles. After a few seconds, a chair pushed by

a person appears in the view of 2D lidar and is heading to the

robot. The tracking algorithm based on KF reasonably

estimates the obstacle’s state by the iterations with

measurements. The person continues moving towards the

robot at around 0.5 m/s. The robot changes its direction to

another side and then, passes through this chair successfully.

C. Discussions

 The baseline (TEB local planner + cost-map converter)

which does directly represent obstacles as geometric

primitives including points, lines, polygons is widely used for

robotic navigation. However, once a large number of

geometric primitives are involved, the baseline algorithm is

generally considerably higher computational demand since

huge parameters need to be addressed. Allowing for the

limited computation power and real-time requirement, such a

strategy is not available to handle fast-evolving scenarios

where a mobile robot and moving obstacles “co-exist”. In

contrast, the proposed approach can realize a better avoidance

performance. The proposed method processes the laser-point

cloud for obtaining line segments and circles as consistent and

meaningful representations of detected obstacles, which

enormously reduces the computational resource. The

corresponding reasons are twofold. First, in the geometric

complexity, the lines and circles used for modeling the

detected obstacles are just represented by four parameters and

three parameters respectively. However, the compared

baseline usually considers a polygon with at least six

parameters as an obstacle. Second, in terms of quantitative

terms of geometric primitives, a line segment with two points

and a circle with one three parameters replace a lot of points,

polygons to represent obstacles. Moreover, the laser scan is

first processed with the segmenting, merging and classification

algorithm described above, which significantly reduces the

parameters to be solved. The proposed hierarchical data

association integrated with an independent KF can improve the

obstacle tracking accuracy by greedily assigning each

observed geometric model. Integrating TEB local planner into

the proposed detection-tracking algorithm, we enable the robot

to realize dynamic avoidances. However, there is a challenge

for the proposed avoidance perception strategy in

understanding critical semantic information from a sliced

sample of the world captured by a 2D scanner.

The dynamic avoidance is very complicated. The good

dynamic avoidance system does not only require a robust

perception system based on visual or laser sensors, but also

needs suitable robotic control, localization, local and global

path planners. Thus, a robustly dynamic avoidance requires all

the sub-systems have good performances.

 To evaluate the dynamic avoidance performance of the

proposed strategy, we set relatively simple real experiments in

cluttered real environments. Indeed, in practical scenarios, the

dynamic avoidance strategy costs much computational

Figure. 9. Snapshots of dynamic avoidance.

IEEE TRANSACTIONS ON MECHATRONICS

resource and thus, the performance is also limited by the

computing power of a personal computer(PC), especially in

cluttered surrounding environments. To solve this issue, we

use a local PC to process the algorithm and send the commands

to the robot by wireless; however, with a long distance

between the local PC and the robot, the communication leads

to a delay as well. It is well known that ROS structure cannot

be in real time, which causes that we have to use a highly

efficient perception system to relieve the communication delay

in the ROS structure.

 Moreover, there are two potentially complex dynamic

avoidance experiments. In particular, a person walks through

the line of the robotic heading direction, most cases are that

the robot suddenly stops and then, continues moving without

changing the direction after the person goes away. If the person

stops before the robot, the robot stops and then, turns to

continue moving. But actually, these two examples cannot

show the performance of dynamic avoidance because

generally, the robot does not need to configure the dynamic

avoidance strategy and still can stop before an obstacle and

update to a new trajectory. The spirits behind the set

experiment with both a person and a robot face-to-face

walking in the same line are twofold. First, if the robot cannot

precisely track the dynamic person to obtain the position using

the proposed perception algorithm, the robot would stop or

have a collision with the person. Equipped with the proposed

dynamic avoidance strategy, the robot keeps moving to the

target point while tracking by updating the paths in real time.

Second, due to face-to-face moving in the same line, the robot

must turn a more angle to avoid the dynamic person.

Otherwise, the robot just needs to rotate a small angle to avoid

the obstacle when they are in different lines, in this case, it

cannot illustrate an obvious avoidance performance.

V. CONCLUSION

In this paper, we presented a novel avoiding strategy combined
with the TEB local planner for realizing dynamic obstacle
avoidance. We performed the simulations and real
experiments to demonstrate the capabilities of the proposed
avoidance system on the detection and tracking of obstacles in
real time. Also, these experiments illustrated that the proposed
system is robust and responsive to clutter environments. In the
future, we will combine the 3D perception solution to
recognize the obstacles represented directly by full 3D models
to improve the capability of the robot navigation.

ACKNOWLEDGE

We acknowledge that our research is supported by the State
Key Laboratory of Robotics and System (HIT) (Open
cooperation grant No. SKLRS-2019-KF-02).

REFERENCES

[1] A. Asvadi, C. Premebida, P. Peixoto, and U. Nunes, "3D Lidar-based

static and moving obstacle detection in driving environments: An

approach based on voxels and multi-region ground planes," Robotics and
Autonomous Systems, vol. 83, pp. 299-311, 2016.

[2] J. Park and Y. Kim, "Collision avoidance for quadrotor using stereo

vision depth maps," IEEE Transactions on Aerospace and Electronic
Systems, vol. 51, no. 4, pp. 3226-3241, 2015.

[3] N. Gageik, P. Benz, and S. Montenegro, "Obstacle detection and
collision avoidance for a UAV with complementary low-cost sensors,"

IEEE Access, vol. 3, pp. 599-609, 2015.

[4] H. Dong, E. Asadi, G. Sun, D. K. Prasad, and I.-M. Chen, "Real-time

robotic manipulation of cylindrical objects in dynamic scenarios through

elliptic shape primitives," IEEE Transactions on Robotics, vol. 35, no.

1, pp. 95-113, 2018.
[5] H. Dong, D. K. Prasad, and I.-M. Chen, "Object Pose Estimation via

Pruned Hough Forest With Combined Split Schemes for Robotic

Grasp," IEEE Transactions on Automation Science and Engineering,
2020.

[6] H. Dong, D. K. Prasad, Q. Yuan, J. Zhou, E. Asadi, and I.-M. Chen,

"Efficient Pose Estimation from Single RGB-D Image via Hough Forest
with Auto-context," in 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2018: IEEE, pp. 7201-7206.

[7] H. Dong, G. Sun, W.-C. Pang, E. Asadi, D. K. Prasad, and I.-M. Chen,
"Fast ellipse detection via gradient information for robotic manipulation

of cylindrical objects," IEEE Robotics and Automation Letters, vol. 3,

no. 4, pp. 2754-2761, 2018.
[8] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram,

"Efficient trajectory optimization using a sparse model," in 2013

European Conference on Mobile Robots, 2013: IEEE, pp. 138-143.

[9] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram,

"Trajectory modification considering dynamic constraints of

autonomous robots," in ROBOTIK 2012; 7th German Conference on
Robotics, 2012: VDE, pp. 1-6.

[10] C. Rösmann, F. Hoffmann, and T. Bertram, "Online trajectory planning
in ROS under kinodynamic constraints with timed-elastic-bands," in

Robot Operating System (ROS): Springer, 2017, pp. 231-261.

[11] M. Quigley et al., "ROS: an open-source Robot Operating System," in
ICRA workshop on open source software, 2009, vol. 3, no. 3.2: Kobe,

Japan, p. 5.

[12] C.-L. Hwang and H.-H. Huang, "Experimental validation of a car-like
automated guided vehicle with trajectory tracking, obstacle avoidance,

and target approach," in IECON 2017-43rd Annual Conference of the

IEEE Industrial Electronics Society, 2017: IEEE, pp. 2858-2863.
[13] M. Keller, F. Hoffmann, C. Hass, T. Bertram, and A. Seewald, "Planning

of optimal collision avoidance trajectories with timed elastic bands,"

IFAC Proceedings Volumes, vol. 47, no. 3, pp. 9822-9827, 2014.
[14] M. Thuy and F. P. Leon, "Non-linear, shape independent object tracking

based on 2d lidar data," in 2009 IEEE Intelligent Vehicles Symposium,

2009: IEEE, pp. 532-537.
[15] T. Weiss, B. Schiele, and K. Dietmayer, "Robust driving path detection

in urban and highway scenarios using a laser scanner and online

occupancy grids," in 2007 IEEE Intelligent Vehicles Symposium, 2007:
IEEE, pp. 184-189.

[16] M. S. Darms, P. E. Rybski, C. Baker, and C. Urmson, "Obstacle

detection and tracking for the urban challenge," IEEE Transactions on
intelligent transportation systems, vol. 10, no. 3, pp. 475-485, 2009.

[17] C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte,

"Simultaneous localization, mapping and moving object tracking," The
International Journal of Robotics Research, vol. 26, no. 9, pp. 889-916,

2007.

[18] T. Mori, T. Sato, H. Noguchi, M. Shimosaka, R. Fukui, and T. Sato,
"Moving objects detection and classification based on trajectories of

LRF scan data on a grid map," in 2010 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2010: IEEE, pp. 2606-
2611.

[19] M. Przybyła, "Detection and tracking of 2d geometric obstacles from lrf

data," in 2017 11th International Workshop on Robot Motion and

Control (RoMoCo), 2017: IEEE, pp. 135-141.

[20] C. Mertz et al., "Moving object detection with laser scanners," Journal

of Field Robotics, vol. 30, no. 1, pp. 17-43, 2013.
[21] M. Dekan, D. František, B. Andrej, R. Jozef, R. Dávid, and M. Josip,

"Moving obstacles detection based on laser range finder measurements,"

International Journal of Advanced Robotic Systems, vol. 15, no. 1, p.
1729881417748132, 2018.

[22] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile

robots," in Autonomous robot vehicles: Springer, 1986, pp. 396-404.
[23] J. Borenstein and Y. Koren, "Real-time obstacle avoidance for fast

mobile robots," IEEE Transactions on systems, Man, and Cybernetics,

vol. 19, no. 5, pp. 1179-1187, 1989.
[24] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle

avoidance for mobile robots," IEEE transactions on robotics and

automation, vol. 7, no. 3, pp. 278-288, 1991.

IEEE TRANSACTIONS ON MECHATRONICS

[25] D. Fox, W. Burgard, and S. Thrun, "The dynamic window approach to
collision avoidance," IEEE Robotics & Automation Magazine, vol. 4,

no. 1, pp. 23-33, 1997.

[26] C. Rösmann, F. Hoffmann, and T. Bertram, "Integrated online trajectory

planning and optimization in distinctive topologies," Robotics and

Autonomous Systems, vol. 88, pp. 142-153, 2017.

[27] H. Dong, I.-M. Chen, and D. K. Prasad, "Robust ellipse detection via arc
segmentation and classification," in 2017 IEEE International Conference

on Image Processing (ICIP), 2017: IEEE, pp. 66-70.

[28] G. Bishop and G. Welch, "An introduction to the kalman filter," Proc of
SIGGRAPH, Course, vol. 8, no. 27599-23175, p. 41, 2001.

[29] T. Bailey and H. Durrant-Whyte, "Simultaneous localization and

mapping (SLAM): Part II," IEEE robotics & automation magazine, vol.
13, no. 3, pp. 108-117, 2006.

Huixu Dong (S’17–M’18) received the

B.Sc degree in mechatronics engineering

from Harbin Institute of Technology in

China, in 2013 and obtained Ph.D. degree

at Robotics Research Centre of Nanyang

Technological University, Singapore

2018. He was a post-doctoral fellow in

Robotics Institute of Carnegie Mellon

University and currently, is a research

fellow in Bio-Robotics Lab of National University of Singapore. His

current research interests include robotic perception and grasp in

unstructured environments, robot-oriented image processing,

computer vision and robot-oriented artificial intelligence, the

navigation of mobile robot and optimal design of robotic gripper.

Ching-Yen Weng received the B.S. degree in

electrical engineering from National Tsing Hua

University, Taiwan, and the M.S. degree in

mechanics from Tsinghua University, Beijing.

He is currently pursuing the Ph.D. degree in

robotics with Nanyang Technological

University (NTU), Singapore, working with

Prof. I.M. Chen on collaborative robotics. His

research interests include factory automation,

system performance analysis, robotic manipulation and human-robot

collaboration.

Chuangqiang Guo received the B.S. and

M.S. in Mechanical Engineering from Harbin

University of Science and Technology,

Harbin, China, in 2005 and 2008 respectively,

and Ph.D. degree in Mechanical Engineering

from Harbin Institute of Technology, China,

in 2012. He is currently an Associate Research

Fellow of mechanical engineering in the State

Key Laboratory of Robotics and System, Harbin Institute of

Technology. His current research interests include the design and

control technologies of AC motor drive and robotic system.

Haoyong Yu received the B.S. and M.S.

degrees in Mechanical Engineering from

Shanghai Jiao Tong University, Shanghai,

China, in 1988 and 1991 respectively. He

received the Ph.D. degree in Mechanical

Engineering from Massachusetts Institute

of Technology, Massachusetts, USA, in

2002. He was a Principal Member of

Technical Staff at DSO National

Laboratories, Singapore, until 2010. Currently, he is an associate

professor of Advanced Robotic Centre and the department of

biomedical engineering at the National University of Singapore. His

current research interests include biomedical robotics and devices,

rehabilitation engineering and assistive technology, biologically

inspired robotics, intelligent control and machine learning.

I-Ming Chen received the B.S. degree from

National Taiwan University in 1986, and

M.S. and Ph.D. degrees from California

Institute of Technology, Pasadena, CA in

1989 and 1994 respectively.

 He is a full professor of the School of

Mechanical and Aerospace Engineering,

former directions of Robotics Research

Centre and Intelligent System Centre in

Nanyang Technological University,

Singapore. He is Fellow of IEEE and Fellow of ASME, Fellow of

Academy of Engineering(Singapore), General Chairman of 2017

IEEE International Conference on Robotics and Automation

(ICRA2017). He is a senior editor of IEEE transaction on robotics

and Editor-in-Chief of IEEE Transactions on Mechatronics. He also

acts as the Deputy Program Manager of A*STAR SERC Industrial

Robotics Program to coordinate project and activities under this

multi-institutional program involving NTU, NUS, SIMTech,

A*STAR I2R and SUTD. He works on many different topics in

robotics, such as mechanism, actuator, human-robot interaction,

perception and grasp, and industrial automation.

