
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 

 

 

 

1 

 

Abstract—Robotic grasp in complex open-world scenarios 

requires an effective and generalizable perception. Estimating 

object’s pose is needed in a variety of practical grasping scenarios. 

Here we present a novel approach of pose estimation of texture-

less and textured objects. The algorithm utilizes a single RGB-D 

image to exploit depth invariant, oriented point pair feature as 

well as local contextual sensitivity in cluttered environments. To 

enhance the performance of the voting process and improve 

learning efficiency, we employ a global pruning algorithm that 

reduces the risk of over-fitting and simplifies the structure of 

decision trees after compensating for the complementary 

information among multiple trees by optimizing a designed global 

objective function. Finally, we also refine the pose obtained from 

the above stage. The proposed approach of estimating 6D (Degree 

of Freedom) poses of textured and texture-less objects is evaluated 

on publicly available datasets against the recent works under 

various conditions. It illustrates that our framework is superior to 

these recent works. Further, we perform extensive qualitative 

experiments of robotic grasp to illustrate the proposed approach 

can be applied to practical scenarios. 

 

Note to Practitioners—This paper is motivated by the problem of 

the pose estimation of textured and texture-less objects in clutter 

environments. It is difficult for conventional works to address the 

issue of estimating textured or texture-less objects’ poses  in such 

scenarios. We considered that a novel system should be able to 

obtain the 6D poses of objects. Therefore, we investigate the 

combined use of multiple split functions with different 

characteristics.  Learning the model based on Hough forests 

always cost much computational resource; therefore, we construct 

a  novel pruned  Hough forest for solving this issue. Through the 

comparison and robotic grasp verifications, the behaviour of our 

system can be used in practical applications. In future, we will 

deploy the proposed system in robotic assembling tasks. 
 

Index Terms—Pose Estimation, Hough voting, Robotic grasp, 

Local context, Split function. 

I. INTRODUCTION 

ision for robotics is often approached differently from 

general computer vision as it involves interacting directly 

with the environment[4, 5]. Pose estimation of objects is 

frequently needed in robotic manipulations and scene 

understanding. A few important challenges in estimating poses 

of objects in cluttered and occluded scenarios still remain. 

There exists a vast amount of research activities regarding  

object detection and pose estimation, including template-based, 

deep learning-based and feature-based methods[7-9]. The 

common approach of detecting objects and predicting coarse 

poses is template matching, e.g.[3]. Due to template matching 

based on 3D descriptors, template-based techniques can work 

accurately in practical applications, but also suffer in cases of 

occlusions. Currently, the convolutional neural network (CNN) 

have been applied to learning RGB-D or RGB features. 

Learning RGB-D representations is used for detecting objects 

and estimating 6D poses[7, 8]. Training on real images may 

require a significant energy of the data collection, which limits 

the applications of learning-based methods. Dense features  

with small variance are applied to estimating object pose, which 

achieved a high prediction accuracy[2, 12, 13]. There are a lot 

of feature-based strategies by pixel voting to improve the 

performance of pose estimation[6, 12, 14]. It has been verified 

that the depth comparison features can be employed to improve 

pose estimation tremendously since the depth enriches the 

object’s information such as geometry, shape, contour etc[15]. 

Moreover, the feature on a pair of two oriented points was used 

for estimating object’s pose[6, 14]. Also, the contextual feature 

is employed  to improve the accuracy of pose estimation[12]. In 

terms of dense features, it means each pixel in image generates 

some predictions corresponding to the desired outputs.  

 Given the availability of RGB-D image, we design a system 

to obtain 6D poses (3D rotation and 3D translation) of everyday 

rigid objects accurately even in the presence of clutter. Our 

feature-based work of object’s pose estimation is motivated by 

the concept of Hough forest employed in [6, 14]. Since the 

splitting strategy in a binary tree  determining pairwise pixel 

relationships has proven to be well-suited on object detection 

and pose estimation[16], we utilize three split schemes with 

stable characterises, such as depth invariant, oriented point pair 

feature as well as local contextual sensitivity, to enhance the 

estimation performance of our method.    

    In terms of given scenarios, due to a great deal of clutter, the 

feature on surface point pair is not well suited for estimating 

object’s pose. To be more robust to scale changes, depth 

invariance is considered as a desirable feature to integrate into 
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 decision trees. Aside from their simple operations, depth-based 

features are evaluated rapidly. For the feature on oriented point 

pair, it is considered as a low dimensional description of object 

surfaces that have generally rich variations at each split node. 

For instance, a coke can have a cylindrical shape whereas milk 

boxes are cuboid. The surfaces of these two objects present 

different geometric attributes such as surface normal and so on. 

However, it is not very efficient as a large number of different 

point pairs on planar or self-symmetric objects fall into the 

same hash slot. We adopt the binary tests for surflet-pair 

features as a splitting criterion at nodes, which is invariant to 

translation and rotation. The surflet-pair features characterize 

the intrinsic geometric relation in the scene. In addition, we 

argue that integrating contextual information into random 

forests obviously enhances the learning performance. "Context" 

indicates the inter-relationship of the nearby pixels, also called 

the neighbourhood. It is generally accepted that the 

surroundings of one pixel have a profound inherent relation 

with this pixel. The spirit of a context-sensitive decision tree is 

to utilize split functions integrated by contextual information of 

image pixels at each binary test by coupling the outputs of 

pixels in a small neighborhood, before determining where to 

route the node. In summary, the good performance of our 

approach in estimating 6D pose of objects attributes to the 

reason that  it makes use of the macroscopic physical invariance 

such as depth information and also, utilizes the microscopic 

pixel information including oriented point surflet-pair and 

neighborhood contextual information against occluded and 

cluttered scenarios.  By adding these features, the casted votes 

in Hough space tend to get real pose candidates. Moreover, in 

terms of a texture-less object, the surface has the similar 

appearance and significantly different texture information. 

Thus, it is difficult for the methods relying on abundant 

appearance texture to predict the object class and estimate the 

pose. The proposed approach extracts geometric information 

such as depth, the space vector relations of pixels rather than 

just the surface appearance to realize an excellent performance 

on estimating the pose of texture-less objects. Indeed, Hough 

forest with a large size also causes high computational and 

storage cost, which is a serious issue, especially for real 

applications. To alleviate the computational burden and 

maintain the high performance of Hough forest, inspired by 

[17] but differing from them, we implement to a new 

application-pose estimation by pruning the leaves of decision 

trees under the global optimization in training and also, enforce 

dependencies between pixels rather than make predictions for 

each training pixel independently. From obtaining the pose 

hypothesis, we further refine the final pose by optimizing the 

cost function structured. These features are derived from the 

following contributions. 

• We combine local contextual information based on the 

depth invariant, geometric surflets as well as 

contextual sensitivity into binary test pool at each node 

of decision trees using a new jointed split function 

defined as a predictor, which presents a superior 

 
 

performance compared with several pose estimators. 

• We incorporate complementary information among 

the decision tree for enhancing the learning 

performance of Hough forest and prune insignificant 

leaves to improve the learning effectiveness. It is 

proven that such strategy is effective for pose 

estimation. 

• We achieve considerable successful rates on robotic 

grasping experiments in cluttered and occluded 

scenarios. It is verified that the proposed algorithm can 

be used in practical applications in RGB-D images 

with certain occlusions. 

We present the proposed algorithm in Sec. II. We provide 

quantitative and qualitative analysis of the experiments in Sec. 

III, following by the conclusion in Sec. IV.  

II. METHODOLOGY 

A. Construction of Hough Forest 

For Hough forest, during the training period, a large amount 

of training patches reach each node of a decision tree. To 

optimize the information gain, a defined split function is used 

for guiding the sample patches to different directions at each 

intermediate node and a threshold is assigned to a split function. 

When the patch is at the maximum depth and  the remaining 

number of patches is less than a threshold, the split node is 

regarded as a leaf.  

In a random forest ℱ, each binary tree is built depending on 

a set of sampled image pixels. The local patch appearance 𝒫𝑖  

that is a 3D patch (e.g.  𝑉 × 𝑉 × 4) extracted from an RGB-D 

image is made up of a few parts: {𝒫𝑖 = (ℐ𝑖, 𝑐𝑖 , 𝜃𝑖 , 𝑠𝑖 , 𝑑𝑖 , 𝑛𝑖)}. 𝑖 

is the centre of the patch 𝒫𝑖 .  ℐ𝑖 = (𝐼𝑖
0, 𝐼𝑖

1, 𝐼𝑖
2, … , 𝐼𝑖

𝑔
, … ) 

represents obtained features at the patch  𝒫𝑖 , 𝐼𝑖
𝑔

 is the gth feature 

channel at the patch 𝒫𝑖 [4]. Here the feature channels, such as 

depth, surflet-pair features, colour, the first and second order 

gradients in 𝑥 and 𝑦 dimensions for the intensity space, LBP, 

and HoG, are applied. The vector 𝜃𝑖  includes the pose 

parameters 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧, 𝜃𝑦𝑎𝑤 , 𝜃𝑝𝑖𝑡𝑐ℎ, 𝜃𝑟𝑜𝑙𝑙  associated to each 

patch.  𝜃𝑥, 𝜃𝑦 , and 𝜃𝑧  represent offsets from the point in the 

camera falling on the centre of the training patch to the object 

position in 3D, while 𝜃𝑦𝑎𝑤 , 𝜃𝑝𝑖𝑡𝑐ℎ  and 𝜃𝑟𝑜𝑙𝑙  are the object 

rotation angles denoting the object orientation.  𝑠𝑖  indicates a 

binary class label (0 for background and 1 for object patch) and 

𝑑𝑖 is the offset from the centroid of the  object to the centre of 

the sample patch. Note that 𝑑𝑖  is undefined in case of image 

pixels not belonging to an object class and 𝑛𝑖 is the normal of 

the center 𝑖. 𝑐𝑖   denotes the object class. 

B. Split Functions based on Features  

    The critical step of designing the pose estimators based on 

random forests is to create an effective split function. While 
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training, every non-leaf node 𝐵 in the decision tree is appointed 

a binary test for the sample patch.  

1) Designing a split function based on depth information 

We design a split function based on the pixel-wise depth 

information[15]. We adopt depth-normalized offset vectors in 

binary tests. For the pixel 𝑖  in an image 𝐺, the feature response 

𝐹𝑖(𝐺) is defined,  

𝐹𝑖(𝐺) =
1

𝑅1

∑ 𝐼𝑖
𝑔

𝑜1∈𝑅1

(𝑖 +
𝑜1

𝐷𝐺(𝑖)
) −

1

𝑅2

∑ 𝐼𝑖
𝑔

𝑜2∈𝑅2

(𝑖 +
𝑜2

𝐷𝐺(𝑖)
) 

 

Thus, the binary test 𝑉𝐵,𝑅1,𝑅2,𝑔,𝜏(ℐ) is defined as  

𝑉𝐵,𝑅1,𝑅2,𝑔,𝜏(ℐ) = {
 0(𝑙𝑒𝑓𝑡), 𝑖𝑓𝐹𝑖(𝐺) < 𝜏 

1(𝑟𝑖𝑔ℎ𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,
         (1) 

where 𝐼𝑖
𝑔

 represents the feature channel 𝑔, 𝑅1  and 𝑅2  denote 

two rectangle regions within the patch boundaries, and 𝜏 

represents a corresponding threshold; In an image 𝐺,  𝐷𝐺(𝑖)  is 

the depth at pixel 𝑖, and 𝑜1,𝑜2 represents two offsets from the 

pixel 𝑖. Indeed, these features can implicitly encode contextual 

information. The two rectangular area average values instead of 

two pixels are used in the binary test, which is less sensitive to 

the noise, as illustrated in Fig. 1.  𝑅1, 𝑅2, 𝑔  are generated 

randomly while training.   

The normalization of the offsets by 
1

𝐷𝐺(𝑖)  
 makes the features 

largely depth invariant. In this case, the size of the offset vectors 

is adaptive with the scale of objects in the image, which 

eliminates the need of transforming object class training images 

at multiple scales and solves the issue of variable scales 

efficiently during recall. Moreover, offset pixels with undefined 

depth or which lies on the background or outside of the image 

is set a positive value.  

2) Binary geometric surflet split function 

Here a pair of oriented surface points are referred as surflets, 

each oriented point with its position  𝑝 and its local surface 

normal 𝑛 . They reflect a generalization of curvatures that 

measure geometric relations between neighbouring surflets. 

Inspired but differ from [18], we introduce more shape 

information and use the encoding strategy to calculate the split 

value. Position and surface normal are estimated from multiple 

neighbouring points in the 3D space based on objects’ models. 

For a pair of surflets (𝑝1, 𝑛1)  and (𝑝2, 𝑛2) , we set 𝑝1  as the 

origin. As shown in Fig. 2, for the surflets (𝑝1, 𝑛1) and (𝑝2, 𝑛2), 

the surflet-pair is described by the parameters  

            ∠(𝑛1, 𝑛2), ∠(𝑛2, 𝛿), ∠(𝑛1, 𝛿),   𝛿 = ‖𝑝2 − 𝑝1‖2,                                  

where ∠(𝑛1, 𝑛2) and ∠(𝑛2, 𝛿)  denote 𝑛2  as a direction angle 

and the cosine of a polar angle, respectively; ∠(𝑛1, 𝛿) and 𝛿 

represent the direction and the translation from 𝑝1  to 𝑝2 , 

respectively. We define the surflet feature 𝑆 =

(∠(𝑛1, 𝑛2), ∠(𝑛2, 𝛿), ∠(𝑛1, 𝛿)) . Thus, a unique set of 

parameters can be exactly mapped onto the geometric 

configuration of a surflet pair. A total of 
𝑚(𝑚−1)

2
 features is 

obtained from a surface with 𝑚  surflets. Due to such huge 

amount of features, we have to propose an efficient processing 

scheme. Similar to [19], we encode every element using 8 bit 

binary number in the surflet feature 𝑆 by the following way: 

first judge whether the normal of a pair of orientated points are 

parallel or not.  The most significant bits of all the elements are 

set as 1 when they are parallel, otherwise 0; and then, the rest 

elements are quantized into the remining 7 bits. Indeed, the 

encoding can improve the computational speed since 

normalisation step is skipped. Second, all the elements in the 

feature vector can be integrated together as the most dominant 

factor by the means of mathematical bitwise operation. We 

define a novel split function drastically, which improves the 

accuracy of random forests with the binary tests on the pose 

estimation of object, as discussed in the next section as follows.  

    𝐵(𝑆) = ∑ 𝜎(𝐸𝑛1𝑛2
⊗ 𝐸𝑛1𝛿 ⊗ 𝐸𝑛2𝛿)𝑝1∈𝑅1

𝑝2∈𝑅2

 

where 𝜎(∙) is a binary function that returns 1 if “∙” is true, 0 

otherwise; 𝐸𝑛1𝑛2
, 𝐸𝑛1𝛿  and 𝐸𝑛2𝛿 represent the binary encoding 

numbers of ∠(𝑛1, 𝑛2), ∠(𝑛2, 𝛿) and ∠(𝑛1, 𝛿), respectively; ⊗ 

is the bitwise AND operation, which is highly efficient since 

only binary bitwise operations and the addition are involved; 𝑝1 

and 𝑝2 are from the rectangles 𝑅1 and 𝑅2, respectively (see Fig. 

3). Thus, at the non-leaf node 𝐵, we can define the split function 

𝐹𝐵,𝑅1,𝑅2,𝜏(𝑆) as: 

𝐹𝐵,𝑅1,𝑅2,𝜏(𝑆) = {
0,   𝐵(𝑆) < 𝜏 

1,   𝐵(𝑆) ≥ 𝜏
                    (2) 

where 𝜏  is a threshold stored at the test pool. 

3) Split function by integrating contextual sensitivity 

    Inspired by [12], we use the idea of prioritized node training 

to increase the learning effectiveness in a Hough forest.  But, 

we do not use loss function proposed in [12] to determine the 

order of a priority queue. The new split function is parametrized 

by a context-sensitive decision tree producing contextual 

information based on displacement vectors 𝑜1, 𝑜2  relative to a 

location 𝑖, a threshold 𝜏 that are used to perform a binary test 

for coupling the context sensitivity. The split function that takes 

a patch 𝒫𝑖  as input is provided as follows, 

𝒲(𝒫𝑖|𝑜1,𝑜2, 𝜏) = {
0(𝑙𝑒𝑓𝑡), 𝑖𝑓 𝐸(𝑠,𝑑,𝑠′,𝑑′)~𝑄1,𝑄2

(𝒵) < 𝜏;

1(𝑟𝑖𝑔ℎ𝑡),                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  (3) 

𝒵 = {
𝐾𝜎(𝑑 − 𝑑′), (𝑠, 𝑠′) = (1,1);

0,                   (𝑠, 𝑠′) ≠ (1,1).
             (4) 

(A) (B)

(C) (D)

 
Fig. 1. The RGB image(A); the depth image(B); a large response of depth 
difference for two example features(C); a small response of depth difference 

with the same two example features above (D). A sample patch is marked by a 

bounding box in blue and the two randomly generated regions 𝑅1 and 𝑅2 as 

parts of a binary test are enclosed by the green frames; the white arrow 
represents the 3D offset vector (in red) to the offset pixel locations (yellow 

circles). 
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where 𝐸𝒳~𝑄(𝑓(𝒳))  represents the expectation of 𝑓(𝒳) 

regarding 𝒳 based on a probability distribution 𝑄 that denotes 

the posterior probability of votes for sampling patches arriving 

at leaf nodes; 𝑐 ∈ {0,1}  indicates the binary class label 

illustrating the presence of the object; we use 𝑑  as the 

displacement of the centre of object. In addition, we predict 

(𝑠′, 𝑑′)  sampled depending on 𝑄  instead of (𝑠, 𝑑) . From a 

binary tree 𝑇, we can obtain the associated posterior probability 

of every vote element for a patch 𝒫𝑖  by calculating 𝑄.  𝐾𝜎(∙) =

𝑒𝑥𝑝 (−
‖∙‖2

𝜎2 ) with 𝜎-algebra is just a Gaussian (or radial basis 

function kernel). The bandwidth 𝜎  is a free parameter 

controlling the "window" of the kernel. 𝑄𝑘 = 𝑄(∙ |(𝑖 +
𝑜𝑘), 𝑇) , 𝑘 ∈ {1,2} , are the posterior probabilities by  𝑇  at 

positions (𝑖 + 𝑜1, 𝑖 + 𝑜2)  of the patch 𝒫𝑖 , respectively. For 

Hough forest, the novel split function  𝒲(𝒫𝑖|𝑜1,𝑜2, 𝜏) tries to 

separate the training set into elements that have similar voting 

length and direction, which indeed reduces an uncertainty 

uniformly from root to leaf nodes and leads to more stable 

contextual information.  

C. Training  

1) Traversing decision trees 

   Predicting the object class is considered as a classification 

problem.  The binary test, which allows the stored entropy to be 

minimal, is provided as,  

𝑈1(𝐴) = −|𝐴| ∙ ∑ 𝑀𝑐 ln(𝑀𝑐)                  (5) 

where |𝐴|  denotes the patch number in a set 𝐴  and 𝑀𝑐 

represents the proportion of patches with the object class label 

𝑐 in a set 𝐴. 

    Estimating 6D pose  𝜃  at each node is regarded as a 

regression problem with a multivariate Gaussian distribution, 

i.e.,  𝑝(𝜃) = 𝒩(𝜃; �̃�, Γ) .  �̃�  indicates the mean of 6D pose 𝜃 

and Γ represents the full covariance matrix. 

𝑈2(𝐴) = ln(|Γ(𝑃)|) − ∑
|𝑃𝑖|

|𝑃|
ln(|Γ𝑛(𝑃𝑖)|)𝑟∈{ℒ,ℛ} ,    (6) 

where ℒ and ℛ represent the left and the right, respectively; 𝑃𝑖  

is the set of patches reaching node 𝑟 and 𝑃 is the set of patches 

at the parent node of 𝑟 . The determinant of the covariance 

matrix Γ  tends to be minimized by maximizing Eq.(6). The 

covariance matrix Γ = diag(Γ𝑞 , Γ𝑎) is block-diagonal, Γ𝑞  and 

Γ𝑎 denote the covariance matrix among the position vectors and 

among the rotation angle vectors, respectively[4]. Thus, we can 

obtain the following equation, 

𝑈2(𝐴) = ln(|Γ𝑞| + |Γ𝑎|) − ∑
|𝑃𝑖|

|𝑃|
ln(|Γ𝑟

𝑞
| + |Γ𝑟

𝑎|)𝑟∈{ℒ,ℛ} . (7)  

2) Pruning random forests by complementary information  

Here we make good use of complementary information 

among multiple trees for improving the performance of object’s 

pose estimation and alleviate the computational burden. We 

define the prediction of a decision tree as  

𝑌 = 𝑤Φ(𝑥)                                 (8) 

where the vector 𝑌 denotes the output including the object class 

and the object’s pose. The indicator Φ(𝑥) represents a mapping 

function from the input data 𝑥 to the structure of a tree. 𝑤  

depicts the leaf matrix mapped by all the leaf vectors.  By means 

of minimizing the loss function we define the learning process  

Algorithm 1: Training stage  

1   Initialize the root nodes with all 𝒫𝑖 

2    For all 𝒫𝑖 in the dataset do  

3          For trees in forest do  

4                For depth from 1 to maximum depth do 
5                       Check stopping criteria 

6                       Choose a split function from Eq.(1,2,3)      

7                       For binary test in binary test pool do 
8                               Calculating the best test  

9                       End 

10                     Determine 𝒫𝑖 to the left or the right 

11              End           
12               Store the information of object’s class and pose 

13      End  

14      Minimize the loss Eq.(9) with all 𝒫𝑖 and trees 

15  End  

 

for the leaf vectors in the random forest, 

min
𝑤

1

𝑁𝑇
∑ ∑ 𝐿(𝑌𝑖

𝑡 , �̂�𝑖)𝑇
𝑡=1

𝑁
𝑖=1                            (9) 

s.t. 𝑌𝑖
𝑡 = 𝑤𝑡Φ𝑡(𝑥𝑖) , ∀𝑖∈ [1, 𝑁] ,  ∀𝑡 ∈ [1, 𝑇] ,where 𝑁  denotes 

the training patch sample number and  𝑇  is the number of 

decision trees; 𝑌𝑖
𝑡denotes the prediction such as the object class 

and object’s pose of the 𝑡 th tree; 𝑊𝑡  and Φ𝑡(𝑋)  are the leaf 

matrix and the indicator vector of the 𝑡 th tree;  𝐿(𝑌𝑖
𝑡 , �̂�𝑖) 

indicates the loss function between the prediction 𝑌𝑖
𝑡  and the 

ground truth �̂�. As for regression regarding the object’s pose, 

the mean square error is applied to calculating this loss.  

 Indeed, the loss function 
1

𝑇
∑ 𝐿(𝑌𝑖

𝑡 , �̂�𝑖)
𝑇
𝑡=1  summarized by 

Hough forest based model is different from the ideal loss 

function 𝐿(𝑌𝑖 , �̂�𝑖), 𝑌𝑖 =
1

𝑇
∑ 𝑌𝑖

𝑡𝑇
𝑡=1  related to the final prediction 

of Hough forests. We integrate the ideal loss function into Eq. 

(9) to retrieve the complementary information among decision 

trees. Thus, we define the global reformulation of random forest 

as follows, 

𝑝1  

𝑝2  

𝑛2  

𝑛1  

𝑛1  

𝑒1  

𝑒2  

𝑒3  

(𝑝1 , 𝑛1) 

(𝑝2, 𝑛2) 

𝛿 

𝑛2  

𝑛2  

𝛼 

𝑎𝑟𝑐 cos 𝛽 

𝑎𝑟𝑐 cos 𝛾 

(A)

(B)

(C)  
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min
𝑊

1

2
‖𝑊‖2 +

𝐶

𝑁
∑ 𝐿(𝑌𝑖 , �̂�𝑖)

𝑁
𝑖=1                      (10) 

s.t., 𝑌𝑖 = 𝑊Φ(𝑥𝑖), ∀𝑖 ∈ [1, 𝑁]. 

along with   𝑊 = [𝑤1, … , 𝑤𝑡 , … , 𝑤𝑇], 

Φ(𝑥) = [Φ1(𝑥); … ; Φ𝑡(𝑥); … ; Φ𝑇(𝑥)]. 

where the L2 regularization term 
1

2
‖𝑊‖2 can alleviate the over-

fitting issue and 𝐶  represents the control parameter. The 

proposed global objective reformulation is efficiently solved by 

the convex optimization based on the linear support vector.  

D. Testing 

While testing, each sample patch 𝒫�̂�  from a novel RGB-D 

image passes through all the trees in Hough forests. The 

probability 𝑝(𝑐|ℱ, 𝒫�̂�)  of object class 𝑐   is obtained via 

averaging the probabilities of object class labels at the reached 

leaf nodes. The pose is estimated based on non-maximum 

suppression (NMS).  

E. Refining the pose 

   Here as an optional step for estimating object’s pose, we use 

a similar solution proposed by [20] to refine the pose hypothesis 

obtained from the stage above to further improve the estimation 

accuracy and address the pose ambiguity problem.  

III. DISCUSSIONS AND EXPERIMENTS 

We first determine the parameters of the algorithm (A) and 

use self-comparison to show the effect of the use of designed 

split functions and pruned Hough forest (B). Subsequently, the 

 
Fig. 4. Parameter determination and self-comparison. 

 
Fig. 5.   Some cases of pose estimation of object 3D models constructed by ourselves. The results of pose estimation are visualized by the bounding boxes. 

 

TABLE I.  Results  on the dataset of [1] for the metric presented by [1]. All the data can be found in the corresponding works. 

Methods Object 

 Ape          Bench Vise Driller Cam Can Iron Lamp Phone Cat Hole Punch Duck Box Glue Average 

Hinterstoisser[1](%) 95.8    98.7 93.6 97.5 95.4 97.5 97.7 93.3 99.3 95.9 95.9 99.8 91.8 96.3 

Cabrera[5, 10] (%) 95.0    98.9 94.3 98.2 96.3 98.4 97.9 95.3 99.1 97.5 94.2 99.8 96.3 97.1 

Kouskouridas [11] 

(%) 

95.7    99.7 99.2 99.6 96.1 98.5 99.6 96.7 99.8 99.5 96.1 98.1 98.2 98.2 

Ours(%) 99.0    99.5 99.9 99.4 99.5 99.7 99.4 99.5 99.6 99.3 99.1 99.9 99.7 99.5 

 

 
Fig. 6.   The pose estimation examples on the dataset of [1]. 

 
Fig. 7.  The pose estimation examples on the dataset of [2]. The estimated results are visualized via the bounding boxes. 
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performance of the proposed method is assessed on public 

datasets using the same metrics[1, 21] (C).  F-measure is used 

as the criterion as well. The robotic grasping experiments are 

conducted (D). Note that rigid objects with texture-less and 

texture are invovled in all the compared experiemts and robotic 

grasping experiments for varifying the proposed method can 

address pose estimation of textured and texture-less objects. 

A. Framework Parameters 

Tuning parameters of the proposed algorithm is implemented 

on training images generated via the virtual camera in OpenGL 

in Sec. II. We train the model by varying a parameter while 

fixing all other parameters. 

The patch size 𝑉  generates an important influence on the 

performance since a patch with a big size always obtains a 

holistic matching, which results in being sensitive to clutter and 

occlusions. When the patch size becomes small relatively, it 

tends to be considered as noise. Moreover, a forest including 

more than eight binary trees costs much computational 

resource. The size 𝑉 of the patch is set to 24 and the number of 

trees is 8, as shown in Fig.4(A).  

Regardless of using either 50k or 100k training images, the 

depth of trees is of importance in detection performance (see 

Fig. 4(B)). Figure 4(B) illustrates that increasing the tree depth 

results in the improvement of F-measure.  The deeper tree 

requires needs more memory. The depth of trees is 35.  

B. Performance Evaluations by Self-comparison 

The proposed method based on pruned Hough forest with 

combined split functions delivers a relative accurate 

performance on the metrics used by [1] and [21] for the dataset 

[1] where the object class is known in advance. On the whole, 

the integration of split strategies on depth invariant, geometric 

orientation and local contextual sensitivity into Hough forest is 

helpful to improving pose estimation’s performance. For the 

metric [1], the proposed method is almost reaching to 90% of 

pose correctly, as illustrated in Fig. 4(C). Specifically, in terms 

of estimation performance, the estimator with just pixel-wise 

split scheme is less than one with just depth invariance (15.3%), 

one with just geometric surflet (21.1%) and one with just 

contextual sensitivity (23.7%).  Contrastively, as the metric [21] 

is more rigorous than the metric [1] on the rotation evaluation, 

our approach still  reaches 76.6% accuracy, which is 

considerably more than one with just pixel-wise split function 

(-22.4%), one with just depth invariance (-12.9%), one with just 

geometric surflet (-9.5%) and one with just contextual 

sensitivity(-5.2%).  

The use of the pruning strategy integrated into Hough forest 

leads to a considerable improvement of F-measure ( 10.2% and 

9.3% for the metrics of [1] and [21], respectively) than one with 

the combined split scheme, as shown in Fig. 4(D). After pruning 

Hough forest, the size of the learning model changes to 167M 

from 682M. The training time reduces from 486 min to 133 

min. Indeed, the refinement stage is optional, and without it, the 

estimator already has got a good performance. For the dataset 

of [1],  the use of the refinement improves the performance of 

the final 6D pose(-2.1% and -2.7% without the refinement for 

two metrics in [1, 21], respectively), as shown in Fig. 4(D).  

We demonstrate some results of pose estimation of objects in 

office scenarios, as shown in Fig. 5. Figure 5 illustrates that the 

proposed pose estimator can deal with some occluded scenarios 

in terms of estimating object’s pose.   

C. Performance Evaluations on The Public Datasets 

1) Results on the dataset including single instance 

    Our estimator is assessed on the public dataset of [1] 

consisting of 13 (out of 15) texture-less and textured objects in 

cluttered environments against the recent works. Table I 

summarizes the performance comparisons of pose estimation. 

The average accuracy over the 13 objects is computed and 

reports 99.5%. Nonetheless, the shape of Ape is irregular so that 

the patches sampled sometimes miss, which results in a lower 

accuracy than other items. From the average performance, our 

comparison with other methods provides further illustration of 

the advantage of our method to deal with one object pose 

estimation in a cluttered scenario, however, without occlusions 

among items. The proposed estimator illustrated that this model 

could generalize well in practical scenarios, without Gaussian 

noise [2]. We demonstrate some examples of pose estimation in 

Fig. 6 as well.   

2) Results on the dataset under different light conditions 

Our approach is compared against several estimators on the 

dataset of [2], which includes textured and texture-less objects 

with a variety of illuminations, such as the brightness, darkness, 

and directional spot light (spot), as shown in Table II. The spot 

image set was tested for showing the performance of pose 

estimator under a new lighting scenario, realizing an average 

accurate rate of 92.4%. The proposed estimator has a robust 

generalized capability for different appearances in multiple 

lighting conditions, even without the training set with Gaussian 

noise. Since the features extracted by us are geometric rather 

than just the appearance, the change of appearances does not 

have obvious effect on the pose estimation.  Our approach 

realizes a better performance on estimating the pose of object 

with small size such as Duck. In terms of objects with less 

 
Table II. Results for the metric [1] on the dataset of [2]. 

Object [3] [2] [6] Ours 

Audio Box - 75.4% 71.5% 73.6% 

Carry Case - 95.9% 90.7% 96.7% 

Dish Soap - 100% 100% 100% 

Helmet - 77.6% 74.5% 80.1% 

Hole Puncher - 98.1% 94.3% 99.2% 

Pump - 69.3% 67.4% 71.8% 

Teapot - 91.9% 89.8% 94.7% 

Toolbox - 99.5% 100% 100% 

Toy (Battle Cat) 70.2% 91.8% 92.4% 90.5% 

Toy (Panthor) - 96.9% 94.2% 97.3% 

Toy (Stridor) - 94.0% 94.3% 93.6% 

Stuffed Cat - 98.3% 94% 99.1% 

Duck - 81.6% 87.7% 92.7% 

Dwarf - 67.6% 65.6% 83.4% 

Mouse - 89.1% 90.1% 94.8% 

Owl - 60.5% 90.27% 91.4% 

Elephant - 94.7% 96.13% 98.3% 

Samurai - 98.5% 99.6% 98.6% 

Sculpture 1 - 82.7% 89.5% 93.4% 

Sculpture 2 - 100% 100% 100% 

Average - 88.2% 89.1% 92.4% 
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features such as Driller, the proposed estimator is superior to 

several recent methods because the integration of context 

sensitivity enhances the capability to learn a variety of features. 

Several estimation examples are illustrated in Fig. 7. 

D. Robotic Grasping Experiments in Clutter Environments 

To verify that our pose estimator can predict objects’ pose 

efficiently and accurately in practical applications, we conduct 

robotic grasping experiments based on the presented pose 

estimator in cluttered environments.   The experimental 

platform is made up of a robotic arm-UR5, a  two-finger 

Robotiq 85 gripper with under-actuated grasping property[22, 

23]  , and a Kinect v2 camera, as shown in Fig. 8.  

We define that the robotic grasp is considered as a success 

grasp based on the proposed perception strategy if an object is 

successfully picked up from an initial position. It is well known 

that many factors, such as suitable motion planning, robotic 

control, gripper, perception strategy, generate important effects 

on a success of robotic grasp since the robotic grasping is a 

systemic work. That is, any factor may lead to a failure grasp. 

The robotic grasping actions rely on the feedback from 

perception prediction. If objects to be grasped are put in 

occluded scenarios, the robot has to use a complex motion 

planning to avoid obstacles, which results in that motion 

planning becomes the main factor affecting a grasping success. 

To focus on that the proposed pose estimator can be used in 

robotic grasps, we just implement the robotic grasping 

experiments in cluttered scenarios. Based on the inverse 

kinematics, the robot can grasp the object by the proposed pose 

estimator predicting the object’s pose. Here we introduce the 

grasp planning briefly. The robot arrives at the defined pre-

grasp position with around 100mm before the final grasp. From 

here, the robot approaches straight forward until the final grasp 

pose is reached. The gripper is clamped and the robotic-arm lifts 

the object. We perform the grasping task with each object for 

10 robot trials for a total of 60 trials, as illustrated in Fig. 9. Our 

pose estimator performs equally well for grasping texture-less 

and textured objects with different shapes. For the object set, 

we achieved a grasp success rate of 98.33% (59/60).   One 

failure is usually caused by occasional deviations during the 

execution of grasping due to slipping.  

To illustrate the importance of the pose estimation accuracy 

for robotic grasping, we set up the experiments of robot 

grasping the canned tomato can and the soya milk carton box 

on purpose. Since the widths of these two objects are almost the 

same as the maximum opening value of the gripper. If the 

difference between the practical result and predicted pose is not 

small enough, the grasp tends to be failed due to some 

collisions. From the experimental result, our method can obtain 

an accurate pose to the robot such as the robot grasps objects 

with the size almost equal to the maximum opening value of the 

gripper. A key potential application is that the proposed method 

can be used in robotic assembling tasks based on an accurate 

pose estimation. Moreover, a perception circle approximately 

costs average 1s and its far from real time. However, such 

perception speed can cope with most of robotic grasping cases.   

IV. CONCLUSION 

We developed a learning-based method of estimating 6D pose 

of everyday objects in crowded scenes for task-oriented grasps 

by designing a novel Hough forest structure. Extensive 

evaluation experiments on challenging public datasets 

depicting realistic scenarios are performed by comparing with 

several recent approaches. The experiments on datasets 

illustrate that the proposed estimator has a good performance in 

estimating object’s pose in cluttered and occluded 

environments. Moreover, the robotic grasping experiments 

demonstrate that our pose estimator can be used in practical 

environments. The limitation in this work is that this pose 

estimator cannot be applied to real-time applications. In future, 

for real time use we will try to improve the pose estimation 

speed.  
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