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A B S T R A C T   

This paper provides a geometrical insight into the dualities of compliant mechanisms via repelling 
screws. A method for the construction of the repelling screw system is proposed. By means of 
screw theory and linear algebra, the closed-loop relationships among the twist/wrench spaces of 
both actuation- and constraint-screw systems are identified, upon which the kinematics, statics 
and stiffness/compliance of both full- and limited-mobility compliant mechanisms are analysed. 
The internal correlations between repelling screws and dualities of mechanisms are investigated, 
which reveals both orthogonal and dual properties of mechanisms with either parallel or serial 
configuration. The repelling-screw-based representation is applied to describing the permitted 
motions and restricted constraints of the mechanism. In addition, a novel and systematic 
approach for parallel-to-serial/serial-to-parallel transformation is proposed, which retains the 
capability of changing the constraints and relative dimensions of the target configuration to better 
suit a specific task. A few examples conducted demonstrate the feasibility of the proposed 
approach and the effectiveness of the repelling-screw based interpretations of mechanism 
geometries.   

1. Introduction 

Compliant mechanism design plays a pivotal role in enabling robots to work in practical scenarios [1–4]. The behaviors based on 
compliant mechanisms can be modeled through elastic serial or parallel mechanisms, which provides a theoretical base for what 
alternative designs to be considered for completing some tasks. Apart from the theoretical constructions, many efforts have been made 
to developing compliant robotic systems for practical applications, including but not limited to, confined-space surgical applications 
[5], nano-manipulators [6], sensors [7], as well as compliant robotic grippers [8]. In addition, analytical approaches based on the 
compliant serial or parallel mechanism for modeling robot’s kinematics and stiffness have been extended to evaluate novel designs 
with various materials, configurations, and actuation systems [9–11]. 

The demand for a compliant system leads to the study of elastic behaviors. Using screw theory [12], Dimentberg [13] studied the 
static and small vibrations of rigid platforms suspended by line springs. Lončarić [14] analysed the synthesis problem of stiffness 
matrix using Lie groups. Huang and Schimmels [15–17] systematically investigated the decomposition and realization of spatial 
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stiffness with simple and screw springs. In their recent work [18–20], the geometric construction-based realizations of elastic be-
haviors with parallel and serial mechanisms were both addressed. With the synthesis procedures presented in [18], the spatial elastic 
behaviors can be realized by selecting each elastic component in a parallel or serial mechanism based on the geometry of a restricted 

Nomenclature 

Symbols descriptions 
S plücker ray coordinated screw 
Saxis plücker axis coordinated screw 
Δ the elliptical polar operator 
s the axis vector of a screw 
r the distance vector between the origin O and an axis vector s 
S screw system 
Sr repelling screw system 
Ad the adjoint transformation matrix 
Ts the twist space of springs 
Ts the basis of Ts 
St the element of Ts 
Ws the wrench space of springs 
Ws the basis of Ws 
Sw the element of Ws 
Tc the twist space of constraints 
Tc the basis of Tc 
S∗

t the element of Tc 

Wc the wrench space of constraints 
Wc the basis of Wc 
S∗

w the element of Wc 

T the entire twist space in three-dimensional Euclidean space 
T the basis of T 

$t the element of T 

W the entire wrench space in three-dimensional Euclidean space 
W the basis of W 

$w the element of W 

St,i the unit twist associated with ith spring 
Sw,i the unit wrench associated with ith spring 
S∗

t,i the unit twist associated with ith constraint 
S∗

w,i the unit wrench associated with ith constraint 
CS(#) the column space of matrix # 
Null(#) the null space of matrix # 
δfi the intensity of Sw,i (i = 1, 2, ⋯j)
δf∗k the intensity of S∗

w,k (k = 1, 2, ⋯6 − j)
δθi the intensity of St,i (i = 1, 2, ⋯j)
δθ∗k the intensity of S∗

t,k (k = 1, 2, ⋯6 − j)
K stiffness matrix 
C compliance matrix 
Kθ joint stiffness matrix of compliant mechanism 
Kθ,s joint stiffness matrix of compliant mechanism (except constraints) 
Cθ joint compliance matrix of the compliant mechanism 
Cθ,s joint compliance matrix of compliant mechanism (except constraints) 
ki the stiffness of ith joint with spring 
ci the compliance of ith joint with spring 
k∗

i the stiffness of ith constraint 
c∗i the compliance of ith virtual joint associated with ith constraint 
nt,i the ith basis vector of Null(TT

s ) 
nw,i the ith basis vector of Null(WT

s ) 
r length 
L characteristic length 
λ the mean margin of the stiffness errors  
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space of allowable candidates, and the results show that there are infinite number of solutions that realize a specified elastic behavior. 
This approach paves the way for realizing a desired elastic behavior by changing the joint stiffnesses and mechanism configuration. 
Nevertheless, in their work, the rank deficient compliances and constraints were not thoroughly elaborated. Hong and Choi [21] 
proposed a recursive synthesis method for the realization of a stiffness matrix by connecting the same number of linear and torsional 
springs in parallel as its rank. Based on the principal axes decomposition, Chen et al. [22] presented an alternative synthesis algorithm 
for the realization of any symmetric spatial stiffness with two sets of orthogonal springs, namely torsional and screw springs, 
respectively connected in parallel. Dong et al. [23] proposed an approach for the generalized quality evaluation of grasp stability via 
contact stiffness. The techniques of stiffness/compliance analysis have been applied to the design and synthesis of robot manipulators 
by many researchers [24–26]. Note that, all these works provide a solid theoretical foundation for the geometrical interpretation of 
stiffness/compliance matrix, while the constraints were rarely considered. However, most compliant mechanisms were designed to 
possess limited degrees of freedom, not full mobility [27,28]. 

An important task in the initial conceptual design of compliant mechanisms is to identify a suitable arrangement of flexures and 
actuators for the desired mobility. In other words, the relationships between actuation and constraint spaces, and the stiffness/ 
compliance matrix need to be established so as to determine the desired configuration and actuation scheme. To solve this problem, a 
variety of constraint-based approaches have been developed for the design of compliant parallel mechanisms [29–32]. Based on screw 
theory, Hopkins and Culpepper [31–33] proposed a freedom and constraint topology (FACT) approach, which provides an intuitive 
visualization of the freedom and constraint spaces without mathematical calculation. Yu et al. [34] further presented a modified FACT 
method by mapping from a geometric concept to physical entities and by combining with other methods, including equivalent 
compliance mapping, geometric building block, classification and numeration, etc. This method was taken into the practice for flexure 
modules [35] and flexure systems [34], respectively. Su et al. [36,37] systematically studied the internal relationship between the 
constraint-based design approach and screw theory, and showed its application to the synthesis and analysis of flexure systems. 
Furthermore, the concept of line screws with zero pitches was proposed, and used in the synthesis of flexures [38,39]. A symbolic 
formulation for analytical compliance analysis and synthesis of general flexure mechanisms, including serial chains, parallel chains, or 
hybrid structures, is presented in [40]. To determinate the layout of actuators, Hopkins and Culpepper [41] proposed a quantitative 
and graphical design tools that can minimize parasitic errors in parallel flexure systems. Yu et al. [42] pointed out that the constraint 
wrenches are always linearly independent of actuation forces. Nevertheless, little work has been devoted to the geometrical inter-
pretation of the symmetry properties, especially dualities, of the compliant systems with constraints. 

The duality principle exists widely in engineering science [43]. Allowing the engineer, or the designer to transform from one system 
to a dual system, it can be utilized to simplify the modeling process and discover new designs. As for mechanisms, duality is closely 
related to the deep symmetry [44] of their structures. Waldron and Hunt [44] first interpreted the duality between kinematics and 
statics of both serial and parallel manipulators using the virtual work principle. The duality in redundant serial and parallel robots was 
studied in [45,46]. For planar robots, Duffy [47] conducted an in-depth study of the first-order instantaneous kinematics and statics. 
Davidson and Hunt [48] further investigated the relations between kinematically equivalent serial and parallel robots. Graphical 
techniques were also adopted to reveal the dualities of both planar and spatial mechanisms [49,50]. The dual properties between twist 
and wrench spaces were utilized to construct the generalized Jacobian matrix for lower mobility parallel manipulators [51]. In terms of 
elastic characteristics, the duality of the eigenscrew decomposition of stiffness/compliance matrix between two equivalent parallel and 
serial mechanisms was presented in [52]. Ohwovoriole and Roth [53] defined the repelling screw system accompanying the reciprocal 
screw system to solve the contact problem. In a recent work, Qiu et al. [54] adopted the reciprocal screws in the forward force analysis 
of Origami mechanisms, which is more or less the same as the statics of parallel mechanisms. A further observation indicates the 
repelling-screw-based approach provides a geometrical interpretation of mechanical dualities [55]. Therefore, a study of the under-
lying relationships between repelling screws and the mechanical dualities is needed for understanding comprehensively the 
geometrical symmetry of compliant mechanisms that correspond to a wider range of mechanism configurations, with either full or 
limited mobility. 

The focus of this work is the correlation between basic concepts underlying the kinematics, statics, motion/constraint and stiffness/ 
compliance of compliant mechanisms, as well as between parallel and serial configurations. Our interest is to provide the reader with a 
deeper understanding on the dualities of flexible systems in the framework of screw theory. To achieve these goals, the underlying 
relations among the twist/wrench subspaces of both motion and constraint spaces are analysed and identified. A special case, in which 
the twist/wrench subspaces of springs are orthogonal to that of constraints, are analysed and further used to adjust the constraint space 
of compliant parallel mechanisms. Utilizing linear algebra, a method for the construction of the repelling screw system is proposed, 
upon which the dualities between the kinematics and statics of both parallel and serial compliant mechanisms are revisited and 
extended. With consideration of constraints, a novel approach for the transformation between parallel and serial compliant mecha-
nisms, along with two methods to adjust the target configuration, are proposed. Examples are presented to demonstrate the application 
of the proposed approach. Finally, the simulation is carried out to validate the proposed approach, as well as the repelling-screw based 
interpretation of the dualities of compliant mechanisms. 

The rest of this paper is organized as follows. Section 2 briefly introduces the basic concepts of screw, screw operations and 
repelling screw. The construction of the cofactor matrix of the repelling screw system are presented in Section 3. In Section 4, the twist/ 
wrench spaces, and their subspaces for the general compliant mechanisms are defined, and the dualities between the kinematics and 
statics of compliant mechanisms with constraints for both serial and parallel configurations are investigated in detail. A novel 
approach for the configuration transformation between serial and parallel compliant mechanisms along with three typical examples 
are presented in Section 5. In Section 6, the proposed approach, as well as the duality analysis, are validated by simulation models. The 
conclusions of this work are presented in Section 7. 
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2. Screw, interchange operation, and repelling screws 

2.1. An introduction to a screw 

A screw is a geometrical entity that can be described as a line vector with a pitch that is a scalar coefficient of the second part of the 
line vector [12,56]. A screw can be represented in the form of a six-dimensional vector with the following definition as 

S =

[
s

s0

]

=

[
s

r × s + hs

]

(1)  

where a screw vector (denoted as S) consists of an axis vector (denoted as s) in a spatial space and a moment vector (denoted as s0) that 
is the sum of r × s and hs. In three-dimensional Euclidean space, both s and s0 are 3 × 1 vectors, thus S is a 6 × 1 vector. r denotes the 
distance vector between O and an axis vector s. h is the screw pitch that is the ratio between the linear and angular speed along an axis. 
In other words, h is the pitch of s which represents the ratio of the magnitude of hs with respect to that of s. A geometrical interpretation 
of a screw is shown in Fig. 1. It is furthermore possible to see that s× (r × s) = r ‖ s ‖, and therefore, r is provided as 

r =
s × s0

‖ s‖2 (2) 

Similarly, by taking the scalar product of s with s0 we obtain 

sTs0 = sT(r× s+ hs) = sT(r× s) + hsTs (3) 

As the first term sT(r×s) on the right side is zero, based on the property of the mixed product, we have 

h =
sTs0

‖ s‖2 (4) 

Support for the axis vector that s = 0, the screw is defined to have an infinite pitch, which has the form 

S =

[
0

hs

]

(5)  

where the dual part hs represents the axis vector. 

2.2. Screw interchange operation 

The general screw definition given in Eq. (1) is actually described using the Plücker ray coordinate frame [57]. It will be shown this 
form of a screw is mostly used to represent a wrench in mechanism analysis later. There also exists another form of a screw that 
exchanges the first and second part of the screw in Eq. (1). This new form of a screw is said to be represented in a Plücker axis co-
ordinate frame, which can be written as 

Saxis =

[
s0

s

]

(6) 

In contrast to the Plücker ray coordinated screw, mostly Saxis is used for representing a twist in mechanism analysis. The rela-
tionship between Saxis and S can be written as 

Saxis = ΔS (7)  

Fig. 1. The direction and position vector of a screw.  
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where Δ is the elliptical polar operator [58], which has the form 

Δ =

[
0 I3

I3 0

]

(8)  

where 0 is a 3 × 3 zero matrix, and I3 is a 3 × 3 identity matrix. Δ has some properties as the following 

Δ = Δ− 1 (9a)  

Δ = ΔT (9b)  

ΔΔ = I3 (9c)  

2.3. An introduction to repelling screws 

Similar to the reciprocal screw system, a new type of screw system can be established according to the concept of repelling screws 
[53]. For a given screw system S, its repelling screw system is symbolized as Sr. Any repelling screw Sr,j that belongs to Sr is defined to 
have a positive reciprocal product with Si (Si ∈ S) when j = i, and its reciprocal product with other screws are zero [54]. This can be 
described as 

Sr,j= {

(
Sr,j
)TSi > 0, i = j

(
Sr,j
)T Si = 0, i ∕= j

(10) 

As a result, we can always find n repelling screws for a given screw system to establish the repelling screw system 

Sr =
{

Sr,1, Sr,2, …, Sr,n
}

(11) 

Also, the dimension of repelling screw system is equal to that of the given screw system 

dim(Sr) = dim(S) = n (12) 

Further it will be shown that repelling screws are particularly useful in the duality analysis of compliant mechanisms. 

3. Constructions of the cofactor matrices of screw system and its repelling screw system 

3.1. Repelling screws of general full-rank space 

For an invertible 6 × 6 matrix J, it can be written as 

J = [S1 S2 ⋯ S6] (13)  

with Sj = [lj mj nj Pj Qj Rj ]
T. 

According to the Cramer’s rule, the inverse of J can be calculated analytically using the determinant and matrix of cofactors of J, 
which has the form as 

J− 1 =
1
|J|

RT =
1
|J|

⎡

⎢
⎢
⎣

r11 r12 ⋯ r16
r21 r22 ⋯ r26

⋮ ⋮ ⋱ ⋮
r61 r62 ⋯ r66

⎤

⎥
⎥
⎦

T

(14)  

where rij is the cofactor of the (i, j) − th element of J. For example, we have 

r11 = (− 1)1+1

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

m2 m3 m4 m5 m6
n2 n3 n4 n5 n6

P2 P3 P4 P5 P6
Q2 Q3 Q4 Q5 Q6
R2 R3 R4 R5 R6

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(15)  

and the rest elements are the same as this. Thus, the inverse of JT has the form as 

(
JT)− 1

=
1
|J|

R =
1
|J|

⎡

⎢
⎢
⎣

r11 r12 ⋯ r16
r21 r22 ⋯ r26

⋮ ⋮ ⋱ ⋮
r61 r62 ⋯ r66

⎤

⎥
⎥
⎦ (16) 

If we further write R in the following form 
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R =
[
Sr,1 Sr,2 ⋯ Sr,6

]
(17) 

According to the Laplace’s formula of cofactor expansion of the determinant, the cofactor expansion along the j − th column of 
J can be written as 

(
Sr,j
)TSj = r1jlj + r2jmj + r3jnj + r4jPj + r5jQj + r6jRj = |J| (18) 

Then for the rest of screws Sk(k ∕= j), we have 
(
Sr,j
)TSk = r1jlk + r2jmk + r3jnk + r4jPk + r5jQk + r6jRk =

⃒
⃒S1 ⋯ Sj− 1SkSj+1 ⋯ S6

⃒
⃒ = 0 (19) 

Thus, we prove Sr,j is the repelling screw of screw Sj(j= 1, ⋯, 6) according to the definition of repelling screw. Note that, Sr,i is not 
a unit screw in this section. Further Eq. (18) makes it possible to write Eq. (16) in another form as 

(
JT)− 1

=

[
Sr,1

(
Sr,1
)TS1

Sr,2
(
Sr,2
)TS2

⋯
Sr,6

(
Sr,6
)TS6

]

(20) 

Eq. (20) gives us the geometrical interpretation of the inverse of JT. In Eq. (20), (Sr,i)
TSi ∕= 0. Note that, as Sr,i exists in both the 

numerator and denominator of the item Sr,i

(Sr,i)
TSi 

in matrix (JT)
− 1. The different signs of the product (Sr,i)

TSi indicate different directions of 

Sr,i. In this paper, without loss of generality, we assume that (Sr,i)
TSi > 0, which implies that the unit motion (force) corresponding to 

the twist (wrench) Si always does positive work through the wrench (twist) Sr,i. 

3.2. Repelling screws of the matrix with rank less than 6 

For a matrix with a rank less than six, it has 

J =
[
S1 S2 ⋯ Sj

]
(21)  

where j is the number of independent screws and j < 6. As a result, it can always find (6 − j) screws that span the null space of JT. 
According to linear algebra [59], the column space of J is defined as 

CS(J) = Span
(
S1, S2, ⋯ Sj

)
(22) 

The null space of JT can be expressed as 

Null
(
JT) = Span

(
S∗

1, S∗
2, ⋯ S∗

6− j

)
(23) 

As CS(J) is orthogonal to Null(JT), namely CS(J) = Null (JT)
⊥, and dim(CS(J))+dim(Null(JT)) = 6. Thus, the following relationship 

holds 

JTS∗
k = 0, k = 1, 2, ⋯6 − j (24) 

The null space of matrix JT can be obtained by several available approaches, such as Gram Schmidt orthogonalization [60,61], 
augmentation matrix approach [62,63], and the observation method [64] for mechanisms. We can construct an augmented matrix J∗, 
which consists of 6-j linearly independent screws in Null(JT) and has the form as 

J∗ =
[
S∗

1 S∗
2 ⋯ S∗

6− j

]
(25) 

Then we can obtain a new matrix G which is 6 × 6 full rank matrix, and it can be written as 

G = [J J∗] (26) 

Since G is full rank, according to the inverse of full rank 6 × 6 matrix developed in Section 3.1, we can always find the inverse of GT 

using repelling screws, which can be written as 

(
GT)− 1

= [A, B] =

⎡

⎢
⎣

Sr,1
(
Sr,1
)T S1

⋯
Sr,j

(
Sr,j
)T Sj

,
S∗

r,1
(

S∗
r,1

)T
S∗

1

⋯
S∗

r,6− j
(

S∗
r,6− j

)T
S∗

6− j

⎤

⎥
⎦ (27) 

On the other hand, we also have 

(
GT)− 1

= G
(
GTG

)− 1
= [J J∗]

([
JT

(J∗)
T

]

[J J∗]

)− 1

= [J J∗]

[
JTJ JTJ∗

(J∗)
TJ (J∗)

TJ∗

]− 1

(28) 

According to Eq. (24), Eq. (28) can be further simplified as 

K. Wang et al.                                                                                                                                                                                                          



Mechanism and Machine Theory 169 (2022) 104636

7

(
GT)− 1

= [J J∗]

[
JTJ 0

0 (J∗)
TJ∗

]− 1

=
[
J
(
JTJ
)− 1 J∗

(
(J∗)

TJ∗
)− 1
]

(29) 

Both Eqs. (27) and (29) give us the formulation of the inverse of GT. Due to its uniqueness, we can further conclude that 

A = J
(
JTJ
)− 1 (30a)  

B = J∗
(
(J∗)

TJ∗
)− 1 (30b) 

Eq. (30) tells us A is determined by J if Eq. (24) satisfies, which means the pseudo inverse of matrix J represented by corresponding 
repelling screws are uniquely determined no matter how augmented matrix J∗ is selected. Also, the geometrical meaning of pseudo 
inverse of J can be interpreted using the repelling screw-based matrix A according to Eq. (27). 

4. Kinematics and statics of compliant mechanisms with constraints 

In this section, the twist/wrench spaces and their subspaces that correspond to both spring displacements and constraints are 
defined for compliant mechanisms. Subsequently, the duality between the kinematics and statics of compliant mechanism with 
constraints is investigated. The relationships among the twist and wrench spaces of compliant mechanisms for both serial and parallel 
configurations are revisited and extended. 

4.1. Twist/Wrench spaces, and their subspaces of the compliant mechanism with constraints 

Referring to Refs. [51,65,66], the set of permitted motions (or twists) spans a j dimensional vector space Ts, known as the twist 
space of springs, the basis of which can be denoted by the matrix Ts = [St,1,St,2,⋯,St,j]. The element of Ts is denoted by St, and St =

Span(St,1, St,2, ⋯ St,j). Similarly, the set of restricted motions spans a 6− j dimensional vector space Tc, known as the twist space of 
constraints, the basis of which can be denoted by the matrix Tc = [S∗

t,1,S
∗
t,2,⋯,S∗

t,6− j]. The element of Tc is denoted by S∗
t , and S∗

t =

Span(S∗
t,1, S∗

t,2,⋯,S∗
t,6− j). For compliant mechanisms, the twists of constraints lead to the errors caused by component compliances. The 

entire set of twists in three-dimensional Euclidean space spans a 6 dimensional vector space T, and its basis T = [Ts Tc]. The element of 
T is denoted by $t, and $t = Span(St,1, ⋯,St,j, S∗

t,1, ⋯, S∗
t,6− j). 

In analogy to the subspaces of twists, the set of the wrenches generated by springs spans a j dimensional vector space Ws, known as 
the wrench space of springs, the basis of which can be denoted by the matrix Ws = [Sw,1 Sw,2 ⋯ Sw,j]. The element of Ws is denoted by 
Sw, and Sw = Span(Sw,1 Sw,2 ⋯ Sw,j). Similarly, the set of the wrenches induced by the twists of constraints spans a 6− j dimensional 
vector space Wc, known as the wrench space of constraints, the basis of which can be denoted by the matrix Wc = [S∗

w,1 S∗
w,2 ⋯ S∗

w,6− j]. 
The element of Wc is denoted by S∗

w, and S∗
w = Span(S∗

w,1, S∗
w,2,⋯,S∗

w,6− j). The entire set of wrenches in 3D space spans a 6 dimensional 
vector space W, and its basis W = [Ws Wc]. The element of W is denoted by $w, and $w = Span(Sw,1, ⋯,Sw,j, S∗

w,1, ⋯, S∗
w,6− j). 

Note that, in this work, the unit wrench Sw,i / S∗
w,i is described with Plücker ray coordinates, while the unit twist St,i / S∗

t,i is described 
with the Plücker axis coordinates. Thus the reciprocal product between a wrench and a twist is obtained by dot product. As Ts ∩ Tc =

∅, the basis vectors in Ts and Tc are linearly independent to each other. The same situation exists between the basis vectors in Ws and 
Wc. 

In the work [51], the following relationships were presented 

Ts = W⊥
c ; Tc = W⊥

s ; Ts = W∗
s ; Tc = W∗

c (31)  

where “⊥” indicates that the two subspaces are orthogonal to each other, and “∗” indicates the two subspaces are dual to each other. In 
fact, the statement that Ts = W∗

s and Tc = W∗
c is not rigorous, as Ts (Tc) is influenced by Wc (Ws). To be more precise, the relationship 

between the twist and wrench spaces is given as T = W∗, which holds for general parallel and serial types of mechanisms. It is 

Fig. 2. Schematic diagram of general compliant parallel mechanism with constraints.  
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noteworthy that this relationship remains invariant with the change of coordinate system. 

4.2. Kinematics and statics of parallel compliant mechanisms with constraints 

4.2.1. Kinematics and statics of general parallel compliant mechanisms 
For parallel compliant mechanisms, as shown in Fig. 2, the wrench space W of both springs and constraints are readily obtained. 

The relation between infinitesimal motion and force expressed in duality form is given as [44] 

$w = Wδf (32a)  

$t =
(
WT)− 1δθ (32b)  

with 

W = [Ws Wc]

δf =
[
δf1 ⋯ δfj δf ∗1 ⋯ δf ∗6− j

]T  

δθ =
[
δθ1 ⋯ δθj δθ∗

1 ⋯ δθ∗
6− j

]T
.

where δfi and δf∗k denote the intensity of Sw,i (i= 1, 2, ⋯j) and S∗
w,k (k = 1, 2, ⋯6 − j). δθi and δθ∗k denote the intensity of 

St,i (i= 1, 2, ⋯j) and S∗
t,k (k = 1, 2, ⋯6 − j), and they can be interpreted as infinitesimal displacement or speed for the analysis of 

deflection or velocity, respectively. Referring to [67], the inverse of the transpose of W be represented as 

(
WT)− 1

= [TA TB] = W
(
WTW

)− 1
= [Ws Wc]

([
WT

s

WT
c

]

[Ws Wc]

)− 1

= [Ws Wc]

[
WT

s Ws WT
s Wc

WT
c Ws WT

c Wc

]− 1  

= [Ws Wc]

⎡

⎣
C− 1

1 −
(
WT

s Ws
)− 1WT

s WcC− 1
2

− C− 1
2 WT

c Ws
(
WT

s Ws
)− 1 C− 1

2

⎤

⎦

=
[

WsC− 1
1 − WcC− 1

2 WT
c Ws

(
WT

s Ws
)− 1 Wc C− 1

2 − Ws
(
WT

s Ws
)− 1WT

s WcC− 1
2

]
(33) 

Thus 

TA = WsC− 1
1 − WcC− 1

2 WT
c Ws

(
WT

s Ws
)− 1 (34a)  

TB = WcC− 1
2 − Ws

(
WT

s Ws
)− 1WT

s WcC− 1
2 (34b)  

where 

C1 =
(

WT
s Ws − WT

s Wc
(
WT

c Wc
)− 1WT

c Ws

)

C2 =
(

WT
c Wc − WT

c Ws
(
WT

s Ws
)− 1WT

s Wc

)
.

Subsequently, we proceed to the calculation of the repelling screws St,i (i= 1, 2, ⋯j) and S∗
t,k (k= 1, 2, ⋯6 − j) for 

Sw,i (i= 1, 2, ⋯j) and S∗
w,k (k = 1, 2, ⋯6 − j). According to Eq. (20), we have 

TA =

[
St,1

(
St,1
)TSw,1

⋯
St,j

(
St,j
)TSw,j

]

(35a)  

TB =

⎡

⎢
⎣

S∗
t,1

(
S∗

t,1

)T
S∗

w,1

⋯
S∗

t,6− j
(

S∗
t,6− j

)T
S∗

w,6− j

⎤

⎥
⎦ (35b) 

Thus, the repelling screw system, namely the twist space of springs and constraints can be written as 

T = [Ts Tc ] =
(
WT)− 1Λt (36a)  

Ts = TAΛt,s (36b) 
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Tc = TBΛt,c (36c)  

where 

Λt = diag
[
(
St,1
)TSw,1 ⋯

(
St,j
)TSw,j

(
S∗

t,1

)T
S∗

w,1 ⋯
(

S∗
t,6− j

)T
S∗

w,6− j

]

Λt,s = diag
[(

St,1
)TSw,1 ⋯

(
St,j
)TSw,j

]

Λt,c = diag
[(

S∗
t,1

)T
S∗

w,1 ⋯
(

S∗
t,6− j

)T
S∗

w,6− j

]

.

The physical meaning behind the repelling screws can be interpreted as that the displacement (deformation) associated with the 
spring (constraint) of ith limb leads to the motion related to the twist St,i (S∗

t,i). Note that, if the errors caused by the constraint 
compliance are not considered, there does not exist displacement along the constraint link, the value of δθ∗

k is always equal to zero. 
Accordingly, Eq. (32b) can be written as 

$t = Ts
(
Λt,s
)− 1δθs (37)  

with δθs = [δθ1 ⋯ δθj]
T. 

According to Eqs. (35) and (36), Ts and Tc can be interpreted as the normalized form of TA and TB, respectively. From Eq. (34), we 
can conclude that Wc has effect on Ts, and Tc is influenced by Ws. The arrangement of constraints affects the twist space of springs, thus 
the conclusion that Ts (Tc) and Ws (Wc) are dual to each other is weakling. The relationships among the twist/wrench subspaces of the 
general compliant parallel mechanism are depicted in Fig. 3. 

4.2.2. Orthogonal twist/wrench subspaces of constraints and springs-a special case for parallel configuration 
In the preceding section, the general case of dualities between the kinematics and statics of general compliant parallel mechanisms 

are analysed and illustrated. For parallel compliant mechanisms, the twists in the operation space vary with respect to the changes of 
the constraint mode. Some constraint modes may lead to bad performances, such as small workspace, large errors, and internal forces. 
Moreover, compliant mechanisms are mostly designed to translate along selected directions and rotate about specified axes [68–73]. In 
most designs of compliant mechanisms, the twist space of springs is orthogonal to the twist space of constraints, and the same situation 
exists between the wrench spaces of both springs and constraints, which indicates ST

t S∗
t = 0 and ST

wS∗
w = 0. Therefore, it is of signif-

icance to investigate the special case that the twist subspace of constraints Tc is the orthogonal complement of the twist subspace of 
springs Ts, and the wrench subspace of constraints Wc is the orthogonal complement of the wrench subspace of springs Ws. For this 
special case, the relationships among the twist/wrench subspaces of constraints and springs are given as 

TT
s Tc = 0 (38a)  

WT
s Wc = 0 (38b) 

According to Eqs. (22)–(24), S∗
w, namely the element of Wc, belongs to the null space of WT

s . Similar to Eq. (29), the inverse of the 
transpose of W be represented as 

Fig. 3. Relations among twist/wrench spaces, and their subspaces of the general parallel compliant mechanism with constraint [51,65,66].  
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(
WT)− 1

= [TA TB] = [Ws Wc]

⎡

⎣
WT

s Ws 0
0 WT

c Wc

⎤

⎦

− 1

(39)  

=
[
Ws
(
WT

s Ws
)− 1 Wc

(
WT

c Wc
)− 1
]

Thus 

TA = Ws
(
WT

s Ws
)− 1 (40a)  

TB = Wc
(
WT

c Wc
)− 1 (40b) 

Subsequently, we move to the calculation of the repelling screws St,i (i= 1, 2, ⋯j) and S∗
t,k (k= 1, 2, ⋯6 − j) for Sw,i (i= 1, 2, ⋯j)

and S∗
w,k (k = 1, 2, ⋯6 − j). According to Eq. (27), we have 

TA = Ws
(
WT

s Ws
)− 1

=

[
St,1

(
St,1
)TSw,1

⋯
St,j

(
St,j
)TSw,j

]

(41a)  

TB = Wc
(
WT

c Wc
)− 1

=

⎡

⎢
⎣

S∗
t,1

(
S∗

t,1

)T
S∗

w,1

⋯
S∗

t,6− j
(

S∗
t,6− j

)T
S∗

w,6− j

⎤

⎥
⎦ (41b) 

Thus, the repelling screw system, namely the twist space of springs and constraints can be written as 

T = [Ts Tc ] =
(
WT)− 1Λt

[
Ws
(
WT

s Ws
)− 1 Wc

(
WT

c Wc
)− 1
]
Λt (42a)  

Ts = TAΛt,s = Ws
(
WT

s Ws
)− 1Λt,s (42b)  

Tc = TBΛt,c = Wc
(
WT

c Wc
)− 1Λt,c (42c) 

Note that, as there does not exist displacement along the constraint link, the value of δθ∗
k is always equal to zero. Accordingly, the 

twist of the rigid platform can be represented as 

$t = Ts
(
Λt,s
)− 1δθs = Ws

(
WT

s Ws
)− 1δθs (43)  

with δθs = [δθ1 ⋯ δθj]
T. 

According to Eqs. (41) and (42), Ts and Tc are determinated by TA and TB, respectively. From Eq. (40), we can conclude that Wc has 
no effect on Ts, and Ws does not affect Tc. In this situation, we can conclude that Ts = W∗

s , Tc = W∗
c . For this special case, the re-

lationships among twist and wrench subspaces of a parallel compliant mechanism are shown in Fig. 4. 

Fig. 4. Relations among twist and wrench subspaces of the parallel compliant mechanism when the twist/wrench subspaces of springs are 
orthogonal to that of constraints. 
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4.3. Kinematics and statics of compliant serial mechanisms 

4.3.1. Kinematics and statics of general serial compliant mechanisms 
For serial compliant mechanisms, a natural choice is to use the unit screws of the compliant joints as the basis elements of Ts. 

Without consideration of the compliance of constraints, the infinitesimal motion of the mechanism $t is only spanned by the elements 
of Ts. Note that, each element in Ts is only determined by the position and orientation of its corresponding compliant joint. For the 
twist space of constraints Tc, we can freely choose any unit screw that is linearly independent with the elements of Ts to form it basis 
Tc. By utilizing the duality principle, the relation between the infinitesimal motion and force is given as [44] 

$t = Tδθ (44a)  

$w =
(
TT)− 1δf (44b)  

with T = [Ts Tc]. 
Similar to obtaining Eq. (33), the inverse of the transpose of W can be represented as 
(
TT)− 1

= [WA WB] =
[

TsD− 1
1 − TcD− 1

2 TT
c Ts
(
TT

s Ts
)− 1 Tc D− 1

2 − Ts
(
TT

s Ts
)− 1TT

s TcD− 1
2

]
(45) 

Thus 

WA = TsD− 1
1 − TcD− 1

2 TT
c Ts
(
TT

s Ts
)− 1 (46a)  

WB = TcD− 1
2 − Ts

(
TT

s Ts
)− 1TT

s TcD− 1
2 (46b)  

where 

D1 =
(

TT
s Ts − TT

s Tc
(
TT

c Tc
)− 1TT

c Ts

)

D2 =
(

TT
c Tc − TT

c Ts
(
TT

s Ts
)− 1TT

s Tc

)
.

Subsequently, we move to the calculation of the repelling screws Sw,i (i= 1, 2, ⋯j) and S∗
w,k (k= 1, 2, ⋯6 − j) for 

St,i (i= 1, 2, ⋯j) and S∗
t,k (k = 1, 2, ⋯6 − j). According to Eq. (20), we have 

WA =

[
Sw,1

(
Sw,1
)TSt,1

⋯
Sw,j

(
Sw,j
)TSt,j

]

(47a)  

WB =

⎡

⎢
⎣

S∗
w,1

(
S∗

w,1

)T
S∗

t,1

⋯
S∗

w,6− j
(

S∗
w,6− j

)T
S∗

t,6− j

⎤

⎥
⎦ (47b) 

Thus, the repelling screw system, namely the twist space of springs and constraints can be written as 

W = [Ws Wc ] =
(
TT)− 1Λw (48a)  

Ws = WAΛw,s (48b)  

Wc = WBΛw,c (48c)  

where 

Λw = diag
[
(
Sw,1
)TSt,1 ⋯

(
Sw,j
)TSt,j

(
S∗

w,1

)T
S∗

t,1 ⋯
(

S∗
w,6− j

)T
S∗

t,6− j

]

Λw,s = diag
[(

Sw,1
)TSt,1 ⋯

(
Sw,j
)TSt,j

]

Λw,c = diag
[(

S∗
w,1

)T
S∗

t,1 ⋯
(

S∗
w,6− j

)T
S∗

t,6− j

]

.

The physical meaning behind the repelling screw Sw,i or S∗
w,i can be interpreted as that the force/torque associated with the ith twist 

of spring (constraint) leads to the force/torque related to the wrence Sw,i (S∗
w,i). 

According to Eqs. (47) and (48), Ws and Wc can be interpreted as the normalized form of WA and WB, respectively. From Eq. (46), 
we can conclude that Tc has effect on Ws, and the change of Ts leads to the change of Wc. The choice of the basis elements of Tc affects 
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the wrench space of springs, as well as δf . Thus the conclusion that Ts (Tc) and Ws (Wc) are dual to each other is weakling. The 
relationships among the twist/wrench subspaces of the general compliant serial mechanism are depicted in Fig. 5. 

4.3.2. Orthogonal twist/wrench subspaces of constraints and springs - A Special case for serial configuration 
In analogy to the case in Section 4.2.2, there is also a special case, in which Ts is an orthogonal complement of Tc, and Ws is an 

orthogonal complement of Wc. The relations between the subspaces of the twist and wrench of serial compliant mechanism are shown 
in Fig. 6. According to Eqs. (22)–(24), Tc can be determinated by the basis elements of Null(TT

s ), thus S∗
t , namely the element of Tc, 

belongs to the null space of TT
s . 

The inverse of the transpose of T can be represented as 

(
TT)− 1

= [WA WB] = T
(
TTT

)− 1
= [Ts Tc]

([
TT

s

TT
c

]

[Ts Tc]

)− 1

= [Ts Tc]

[
TT

s Ts TT
s Tc

TT
c Ts TT

c Tc

]− 1

(49) 

Providing that TT
s Tc = TT

c Ts = 0, it can be further written as 

(
TT)− 1

= [Ts Tc]

⎡

⎣
TT

s Ts 0
0 TT

c Tc

⎤

⎦

− 1

=
[
Ts
(
TT

s Ts
)− 1 Tc

(
TT

c Tc
)− 1
]

(50) 

Thus 

WA = Ts
(
TT

s Ts
)− 1 (51a)  

Fig. 5. Relations among twist/wrench spaces, and their subspaces of general compliant serial mechanisms.  

Fig. 6. Relations among twist/wrench spaces, and their subspaces of the serial compliant mechanism when the twist/wrench subspaces of springs 
are orthogonal to that of constraints. 
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WB = Tc
(
TT

c Tc
)− 1 (51b) 

According to Eq. (27), WA and WB can be rewritten as 

WA = Ts
(
TT

s Ts
)− 1

=

[
Sw,1

(
Sw,1
)TSt,1

⋯
Sw,j

(
Sw,j
)TSt,j

]

(52a)  

WB = Tc
(
TT

c Tc
)− 1

=

⎡

⎢
⎣

S∗
w,1

(
S∗

w,1

)T
S∗

t,1

⋯
S∗

w,6− j
(

S∗
w,6− j

)T
S∗

t,6− j

⎤

⎥
⎦ (52b) 

The repelling screw system, namely the wrench space of springs and constraints with respect to St,i (i= 1, 2, ⋯j) and 
S∗

t,k (k= 1, 2, ⋯6 − j) can be represented as 

W =
(
TT)− 1Λw =

[
Ts
(
TT

s Ts
)− 1 Tc

(
TT

c Tc
)− 1
]
Λw (53a)  

Ws = WAΛw,s = Ts
(
TT

s Ts
)− 1Λw,s (53b)  

Wc = WBΛw,c = Tc
(
TT

c Tc
)− 1Λw,c (53c) 

According to Eqs. (52) and (53), Ws and Wc can be interpreted as the normalized form of WA and WB, respectively. From Eq. (51), 
we can conclude that Tc has no effect on Ws. The arrangement of constraints does not affect the twist space of springs. In this situation, 
Ts (Tc) and Ws (Wc) are dual to each other. 

4.4. Actuation arrangement based on repelling screws 

The repelling screw system can be used for actuation placement in a compliant mechanism. When utilizing force-based actuation 
[41], any actuation wrench of a compliant mechanism is always linearly independent of its constraint wrenches [42]. For a compliant 
parallel mechanism, the basis matrix Wc of its wrench space of constraints can be readily obtained, we can freely choose j unit 
wrenches that are linearly independent to the basis elements of Wc to form the basis matrix Wa of its wrench space of actuators. 
However, some wrench spaces of actuators may cause relatively large errors due to the compliance of constraints. To overcome this 
problem, the wrench space of actuators can be determinated as the null space of WT

c . Preferably, the actuation wrenches of a compliant 
parallel mechanism have one-to-one correspondence with the basis elements of its freedom space [41] by employing the repelling 
screw system, thus maximizing the decoupling of force inputs. For a compliant serial mechanism, the determination of its wrench space 
of actuators is more complicated than that of a compliant parallel mechanism, as the basis matrix Wc of its wrench space of constraints 
cannot be obtained from observation. The basis matrix Tc of a compliant serial mechanism can be determinated as the basis matrix of 
the null space of TT

s . Subsequently, the basis matrix Wc of its wrench space of constraints can be obtained by calculating its repelling 
screw system with Eq. (53c). Similarly, the wrench space of actuators can be determinated as Null(WT

c ). 
By employing shape-memory-alloy (SMA) springs, a single-DOF flexible element that resists the translation along its axis can be 

transformed into a linear actuator that generates a stroke along its axis [74]. When actuating the compliant parallel mechanism with 
SMA actuators, the basis matrix Wa is the same as Ws, which is obtained by calculating the repelling screw system of the basis matrix T 
= [Ts Tc], where Ts is determinated by the basis elements of the desired freedom space, and Tc is obtained by calculating the repelling 
screw system with Eq. (42c). Thus, each basis element of the desired freedom space corresponds to a specific SMA actuator, and this 
repelling-screw-based method can be used to maximize the decoupling of actuator inputs. Note that, the detailed analysis of actuation 
arrangement needs to consider the overall elastic behaviors of a compliant mechanism and the types of actuators, which calls for future 
study. 

5. Configuration transformation between serial and parallel compliant mechanisms 

Based the dual and orthogonal properties of compliant mechanisms presented in the proceeding section, the dualities between the 
stiffness and compliance, as well as parallel and serial configurations are further investigated. From the perspective of repelling screws, 
an approach for configuration transformation between serial and parallel compliant mechanisms is proposed. Three examples are 
included to demonstrate the application of this approach. 

5.1. Parallel-to-serial transformation of compliant mechanisms 

5.1.1. Stiffness inverse of general compliant parallel mechanism 
For a spatial parallel complaint mechanism, its stiffness matrix can be written as 

K = WKθWT = Sw,1k1ST
w,1 + ⋯ + Sw,jkjST

w,j + S∗
w,1k∗1S∗T

w,1 + ⋯ + S∗
w,6− jk

∗
6− jS

∗T
w,6− j (54) 
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with 

Kθ = diag
[
k1 ⋯ kj k∗1 ⋯ k∗6− j

]
(55)  

where Kθ is the joint stiffness matrix of the mechanism. Matrix Kθ is usually treated as a constant diagonal matrix, and k∗
i → ∞ (i = 1,

2, ⋯, 6 − j), if the constraints are considered rigid. 
According to Eq. (35), we have 

W− T =
(
WT)− 1

= [TA TB ] =

⎡

⎢
⎣

St,1
(
St,1
)TSw,1

⋯
St,j

(
St,j
)TSw,j

S∗
t,1

(
S∗

t,1

)T
S∗

w,1
⋯

S∗
t,6− j

(
S∗

t,6− j

)T
S∗

w,6− j

⎤

⎥
⎦ (56) 

Thus the inverse of the stiffness matrix can be written in the form of a compliance matrix as 

C = K− 1 =
(
WKθWT)− 1

= W− T K− 1
θ W− 1 = TΛ− 1

t K− 1
θ Λ− 1

t TT = TCθTT (57)  

where Cθ is the joint compliance matrix of the mechanism. Matrix Cθ is usually treated as a constant diagonal matrix, and can be 
represented as 

Cθ = Λ− 1
t K− 1

θ Λ− 1
t = diag

⎡

⎢
⎢
⎣

1

k1

[(
St,1
)TSw,1

]2 ⋯
1

kj

[(
St,j
)TSw,j

]2
1

k∗1

[(
S∗

t,1

)T
S∗

w,1

]2 ⋯
1

k∗6− f

[(
S∗

t,6− j

)T
S∗

w,6− j

]2

⎤

⎥
⎥
⎦ (58) 

As 1
k∗i

→ 0, Eq. (58) can be rewritten as 

C = TsΛ− 1
t,s K− 1

θ,s Λ− 1
t,s TT

s = TsCθ,sTT
s (59)  

where 

Kθ,s = diag[ k1 ⋯ kj ] (60a)  

Cθ,s = Λ− 1
t,s K− 1

θ,s Λ− 1
t,s = diag

[ 1

k1

[(
St,1
)TSw,1

]2 ⋯
1

kj

[(
St,j
)TSw,j

]2

]

(60b) 

Thus the stiffness matrix developed in Eq. (54) can be constructed using an equivalent serial mechanism whose joints are associated 
with repelling screws St,i (i = 1, 2, ⋯, j). The relationship between the six wrenches, namely Sw,i (i= 1, 2, ⋯, 6) of a compliant 
parallel mechanism, and their repelling screws, namely the six twists St,i (i= 1, 2, ⋯, 6) of an equivalent compliant serial mechanism, 
has been previously identified in [18], and was explained as that a nonzero wrench/twist cannot be reciprocal to six independent 
twists/wrenches, thus can be uniquely determined by five independent twists/wrenches. It is noticed in general St,i and S∗

w,i may not 
have zero pitches, thus a screw-type joint or constraint can be adopted to represent it [75,76]. 

5.1.2. Examples 1 and 2: parallel-to-serial transformation 
In this section, two examples of parallel-to-serial transformation are presented and illustrated. Example 1 is related to the general 

case of compliant parallel mechanism introduced in Section 4.2.1, and Example 2 corresponds to the special case of compliant parallel 

Fig. 7. The spatial compliant parallel platform.  
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mechanism, in which the twist/wrench subspaces of springs are orthogonal to that of constraints, as introduced in Section 4.2.2.  

• Example 1: General compliant parallel mechanism 

For a compliant parallel mechanism, its basis of wrench space has the form as 

W = [Ws Wc ] =
[

Sw,1 Sw,2 Sw,3 S∗
w,1 S∗

w,2 S∗
w,3
]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0 0
0 1 1 0 0 0
0 0 0 0 − 1 − 1
0 0 0 0 0 r
0 0 0 r 0 0
0 − r 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(61) 

For the limb with spring, it is a compliant prismatic joint with linear stiffness ki (i = 1, 2, 3). The constraint limb is a rigid link with 
linear stiffness k∗

j (j = 1, 2, 3). The schematic diagram of this compliant parallel platform is shown in Fig. 7. The null space of WT
s can be 

expressed as 

Null
(
WT

s

)
= Span

(
nw,1, nw,2,nw,3

)
(62)  

where nw,1 = [0 0 1 0 0 0 ]
T, nw,2 = [0 0 0 1 0 0 ]

T, and nw,3 = [ 0 0 0 0 1 0 ]
T. It is found that S∗

w,1∕∈ Null(WT
s ), 

which means the subspaces Ts (Ws) and Tc (Wc) are not orthogonal to each other. 
Now we turn to the inverse of the stiffness matrix. First the inverse of the transpose of wrench matrix in forms of repelling screws 

can be written as 
(
WT)− 1

=
[

TsΛ− 1
t,s TcΛ− 1

t,c

]
= TΛ− 1

t

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r 0 0 0 0 0

0 0 r 0 0 0

0 0 0 0 − r 0

0 0 0 0 − 1 1

− 1 0 0 1 0 0

0 − 1 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

diag
[

1
r

1
r

1
r

1
r

1
r

1
r

] (63)  

with Ts = [St,1 St,2 St,3 ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

r 0 0
0 0 r
0 0 0
0 0 0
− 1 0 0
0 − 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; Λ− 1
t,s = diag

[
1
r

1
r

1
r

]

. 

According to Eqs. (59) and (60), the compliance matrix is obtained by 

C = TsCθ,sTT
s (64)  

with 

Fig. 8. The corresponding compliant serial platform.  
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Cθ,s = Λ− 1
t,s K− 1

θ,s Λ− 1
t,s = diag

[
1

k1r2
1

k2r2
1

k3r2

]

(65) 

It is easy to identify that each repelling screw is associated with a twist that is represented in Plücker axis coordinate frame. The 
developed compliance matrix is related to a compliant serial mechanism, and the corresponding schematic diagram is depicted in 
Fig. 8.  

• Example 2: Compliant parallel mechanism with orthogonal twist/wrench subspaces of constraints and springs 

For a compliant parallel mechanism, its basis of wrench space has the form as 

W = [Ws Wc ] =
[

Sw,1 Sw,2 Sw,3 S∗
w,1 S∗

w,2 S∗
w,3
]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 − 1 − 1 − 1
0 0 0 0 0 r
0 0 0 − r 0 0
0 − r 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(66) 

Similar to Example 1, the ith limb with spring i comprises a compliant prismatic joint with linear stiffness ki (i = 1, 2, 3), and the 
constraint limb is a rigid link with linear stiffness k∗

j (j = 1, 2, 3). The schematic diagram of this compliant parallel platform is shown in 
Fig. 9. The null space of WT

s is identical with that in Example 1. It is easy to see that S∗
w,1, S∗

w,2 and S∗
w,3∈ Null(WT

s ), which indicates Tc is 
an orthocomplement space of Ts. Thus we have 

Fig. 9. The compliant parallel platform with orthogonal wrench subspaces, respectively corresponding to compliant and constraint limbs.  

Fig. 10. The corresponding compliant serial platform of the compliant parallel mechanisms with orthogonal subspaces of wrenches.  
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TA = Ws
(
WT

s Ws
)− 1

= TsΛ− 1
t,s =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 0 r
0 0 0
0 0 0
0 0 0
0 − 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

diag
[

1
1
r

1
r

]

(67)  

with Ts =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 0 r
0 0 0
0 0 0
0 0 0
0 − 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; Λ− 1
t,s = diag

[

1
1
r

1
r

]

. 

Accordingly, Cθ,s can be expressed as 

Cθ,s = Λ− 1
t,s K− 1

θ,s Λ− 1
t,s = diag

[
1
k1

1
k2r2

1
k3r2

]

(68)  

and the compliance matrix can be written as 

C = TsCθ,sTT
s (69) 

The corresponding schematic diagram of this compliant serial platform is shown in Fig. 10. 

5.2. Serial-to-parallel transformation of compliant mechanisms 

5.2.1. Compliance inverse of compliant parallel mechanism 
For a spatial serial complaint mechanism, its compliance matrix can be written as 

C = TCθTT = St,1c1ST
t,1 + ⋯ + St,jcjST

t,j + S∗
t,1c∗1S∗T

t,1 + ⋯ + S∗
t,6− jc

∗
6− jS

∗T
t,6− j (70)  

where Cθ = diag[c1 ⋯… cj c∗1 ⋯… c∗6− j] is the joint compliance matrix of the mechanism. Matrix Cθ is usually treated as a constant 
diagonal matrix, and c∗i → 0, i = 1, 2, ⋯, 6 − j. S∗

t,i (i= 1, 2, ⋯…, 6 − j) is linearly independent with S∗
t,i (i ∕= j) and the elements of 

Ts. 
According to Eq. (47), we have 

T− T =
(
TT)− 1

= [WA WB ] =

⎡

⎢
⎣

Sw,1
(
Sw,1
)TSt,1

⋯
Sw,j

(
Sw,j
)TSt,j

S∗
w,1

(
S∗

w,1

)T
S∗

t,1
⋯

S∗
w,6− j

(
S∗

w,6− j

)T
S∗

t,6− j

⎤

⎥
⎦ (71) 

Thus the inverse of the compliance matrix can be written in the form of stiffness matrix as 

K = C− 1 =
(
TCθTT)− 1

= T− T C− 1
θ T− 1 = WΛ− 1

w C− 1
θ Λ− 1

w WT = WKθWT (72)  

where Kθ is the joint stiffness matrix of the mechanism. Matrix Kθ can be represented as 

Kθ = Λ− 1
w C− 1

θ Λ− 1
w = diag

⎡

⎢
⎢
⎣

1

c1

[(
Sw,1
)TSt,1

]2 ⋯
1

cj

[(
Sw,j
)TSt,j

]2
1

c∗1

[(
S∗

w,1

)T
S∗

t,1

]2 ⋯
1

c∗6− j

[(
S∗

w,6− j

)T
S∗

t,6− j

]2

⎤

⎥
⎥
⎦ (73) 

Eq. (72) can be rewritten as 

K = WsΛ− 1
w,sC

− 1
θ,s Λ− 1

w,sW
T
s + WcΛ− 1

w,cC
− 1
θ,c Λ− 1

w,cW
T
c = WsKθ,sWT

s + WcKθ,cWT
c (74)  

where 

Cθ,s = diag[ c1 ⋯ cj ] (75a)  

Cθ,c = diag
[

c∗1 ⋯ c∗6− f
]

(75b)  

Kθ,s = Λ− 1
w,sC

− 1
θ,s Λ− 1

w,s = diag

[ 1

c1

[(
Sw,1
)TSt,1

]2 ⋯
1

cj

[(
Sw,j
)TSt,j

]2

]

(75c)  
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Kθ,c = Λ− 1
w,cC

− 1
θ,c Λ− 1

w,c = diag

⎡

⎣

1

c∗1

[(
S∗

w,1

)T
S∗

t,1

]2 ⋯
1

c∗6− j

[(
S∗

w,6− j

)T
S∗

t,6− j

]2

⎤

⎦ (75d) 

As 1
c∗i

→ ∞, WcKθ,cWT
c corresponds to the stiffness provided by constraints. S∗

w,i, i = 1, 2, ⋯6 − j represents the location and 

orientation of the ith constraint. 
Thus the compliance matrix developed in Eq. (70) can be constructed using an equivalent parallel mechanism whose joints and 

constraints are associated with repelling screws Sw,i ( i= 1, 2, ⋯⋯j) and S∗
w,i ( i = 1, 2, ⋯⋯6 − j), respectively. It is noticed in 

general Sw,i ( i= 1, 2, ⋯⋯j) / S∗
w,i ( i= 1, 2, ⋯⋯6 − j) may not have zero pitches, thus the screw-type joint/constraint can be 

adopted. The screw-type constraint can be generated by specially designed mechanism. 
Note that, different choices of S∗

t,i (i= 1, 2, ⋯…, 6 − j) lead to different compliant parallel mechanism. In addition, if S∗
t,i (i = 1, 2,

⋯…, 6 − j) ∈ Null(TT
s ), Tc does not affect the wrench space W. Thus the overall arrangement of the constraints of the parallel 

counterpart is adjustable and can be optimized according to the conditions of the installation space. 

5.2.2. Example 3: serial-to-parallel transformation 
As analysed in Section 4.3.1, different choice of the basis elements of Tc affects the wrench space W, which leads to different 

configurations of its parallel counterpart. In this section, we look into the special case that the elements of Tc belongs to Null(TT
s ). 

For a compliant serial mechanism, its Jacobian matrix has the form as 

Ts = [ St,1 St,2 St,3 St,4 ]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− r 0 0 0

0 0 0 r

0 0 r 0

0 0 0 1

0 1 1 0

1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(76) 

Each twist is associated with a compliant revolute joint with torsional compliance ci (i = 1, 2, 3, 4). The schematic diagram of this 
compliant parallel mechanism is shown in Fig. 11. The null space of TT

s can be expressed as 

Null
(
TT

s

)
= Span

(
nt,1, nt,2

)
(77)  

where nt,1 =

[

0 − 1
r 0 1 0 0

]T

, and nt,2 =

[
1
r

0 0 0 0 1
]T

. 

We choose S∗
t,1and S∗

t,2from Null(TT
s ) and set S∗

t,1 = nt,1 and S∗
t,2 = nt,2. Thus 

Fig. 11. The spatial compliant serial parallel platform.  
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T = [Ts Tc ] =
[

St,1 St,2 St,3 St,4 S∗
t,1 S∗

t,2
]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− r 0 0 0 0
1
r

0 0 0 r −
1
r

0

0 0 r 0 0 0

0 0 0 1 1 0

0 1 1 0 0 0

1 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(78) 

Now we turn to the inverse of the compliance matrix. First the inverse of the transpose of twist matrix in the form of repelling 
screws can be written as 

(
TT)− 1

=
[

WsΛ− 1
w,s WcΛ− 1

w,c

]
= WΛ− 1

w

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1 0 0 0 0 1

0 0 0 1 − 1 0

0 − 1 1 0 0 0

0 0 0
1
r

r 0

0 r 0 0 0 0
1
r

0 0 0 0 r

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

diag
[

r
r2 + 1

1
r

1
r

r
r2 + 1

r
r2 + 1

r
r2 + 1

] (79)  

with Ws =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1 0 0 0

0 0 0 1

0 − 1 1 0

0 0 0
1
r

0 r 0 0
1
r

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; Λ− 1
w,s = diag

[
r

r2 + 1
1
r

1
r

r
r2 + 1

]

; Wc =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
− 1 0
0 0
r 0
0 0
0 r

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; Λ− 1
w,c = diag

[ r
r2 + 1

r
r2 + 1

]
. 

According to Eqs. (74) and (75), the 6 × 6 stiffness matrix is obtained by 

K = WsKθ,sWT
s + WcKθ,cWT

c (80)  

with 

Fig. 12. The corresponding compliant parallel platform (r = 16 mm).  
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Kθ,s = Λ− 1
w,sC

− 1
θ,s Λ− 1

w,s = diag
[ r2

c1
(
r2 + 1

)2
1

c2r2
1

c3r2
r2

c4
(
r2 + 1

)2

]

(81) 

It is easy to identify that each repelling screw is associated with a wrench that is represented in Plücker ray coordinate frame. The 
developed stiffness matrix is related to a compliant parallel mechanism, and the corresponding schematic diagram is depicted in 
Fig. 12 (r = 16 mm). In analogy to Example 2 in the Section 5.1.2, when belonging to the null space of TT

s , the twists of constraint does 
not affect the Jacobian matrix of its equivalent parallel mechanism. 

5.3. Adjustment of the target configuration 

5.3.1. Adjustment of the constraint space 
Note that, when belonging to the null space of WT

s , the wrenches of constraint does not affect the configuration of its equivalent 
serial mechanism. Thus we can choose constraint wrenches that belong to Null(WT

s ) to construct the constraint mode so as to change 
the configuration of the compliant mechanism. Without loss of generality, we take the planar case of Example 2 as an example. The 
wrench corresponding to the 2th constraint limb of the configuration in Fig. 13 is different from that of the configuration in Fig. 9, 
while the other constraints and flexible limbs are identical to each other. For the configuration in Fig. 13, S∗

w,2 =

[ 0 0 − 1 r − r 0 ]
T, and S∗

w,2∈ Null(WT
s ). Its serial counterpart is identical with that of the parallel configuration in Example 2, 

see Fig. 10. 

5.3.2. Adjustment of the dimensional/stiffness parameters 
It is noteworthy that a characteristic length L can be defined to normalize the dimensional parameters so as to adjust the target 

configuration. We take Example 3 as an example. All dimensional parameters are normalized by L, Eq. (79) can be rewritten as 

Fig. 13. An equivalent compliant parallel mechanism of the mechanism in Example 2 (Fig. 9).  

Fig. 14. An equivalent compliant parallel mechanism of the mechanism in Example 3 (Fig. 12).  
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(
TT)− 1

=
[

WsΛ− 1
w,s WcΛ− 1

w,c

]
= WΛ− 1

w

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1 0 0 0 0 1

0 0 0 1 − 1 0

0 − 1 1 0 0 0

0 0 0
L
r

r
L

0

0
r
L

0 0 0 0

L
r

0 0 0 0
r
L

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

diag
[

rL
r2 + L2

L
r

L
r

rL
r2 + L2

rL
r2 + L2

rL
r2 + L2

] (82) 

According to Eq. (81), the joint stiffness matrix of the new configuration can be expressed as 

Kθ,s = diag

[
r2L2

c1
(
r2 + L2)2

L2

c2r2
L2

c3r2
r2L2

c4
(
r2 + L2)2

]

(83) 

Thus the characteristic length L also leads to the change of the stiffness parameters of the springs in the new configuration. Fig. 14 
illustrates the new configuration when L = r and r = 16mm, which has different relative dimensions compared with the configuration 

in Fig. 12. For this configuration, the joint stiffness matrix Kθ,s = diag
[

1
4c1

1
c2

1
c3

1
4c4

]

. 

6. Simulation 

In this section, the simulation was conducted in ANSYS to validate the proposed duality analysis as well as the approach of 
configuration transformation. We assume that all components except for the springs are rigid, and the geometric parameter r is set as 
16 mm. The simulation results of the three examples in Section 5 are discussed as follows: 

6.1. Simulation of Example 1 

In this simulation, the stiffness of the three springs in the compliant parallel mechanism is equal to 10 N/mm. With Eq. (65), the 
stiffness of the three springs in the compliant serial mechanism is 2560 N ⋅ mm/rad. When the force is collinear with either x or y axis, 
the deformations of the compliant mechanisms in both theory and simulation are displayed in Fig. 15. It is found that the elastic 
behaviors of the compliant serial mechanism are very close to the ideal ones in theory. For the compliant parallel mechanism, the 
translational stiffnesses along x axis and y axis gain gradually, as the force increases from − 10 to 10 N. Note that, the stiffness is 
indicated as the inverse of the slope of the curve. The mean margins of the stiffness errors along x and y axes are 12.05% and 12.47%, 
respectively. When the forces increase from − 5 to 5 N, the mean margins of the stiffness errors along x and y axes decrease to 7.17% 
and 7.24%, respectively. Note that, when the forces along x axis and y axis are close to zero, the translational stiffnesses approach to 

Fig. 15. Deformations of the compliant mechanisms in Example 2 when the force is collinear with (a) x axis, and (b) y axis.  

K. Wang et al.                                                                                                                                                                                                          



Mechanism and Machine Theory 169 (2022) 104636

22

that of its serial counterpart as well as the ideal stiffness calculated theoretically. Here the mean margin of the stiffness errors is defined 
as 

λ =

∑N

i=1

|εki |
kideal

N
(84)  

where εki is the stiffness error of node i, N is the number of the nodes, and kideal is the ideal stiffness in theory. 
As listed in Table 1, when the force (parallel to z axis) is applied on the point (0, 0, 0) mm, there are no deformations along x, y or z 

axis, which means the manipulator is stiff in this direction. Nevertheless, when the force is imposed on the point (r, 0, 0) mm, the 
deformation exists along x axis, see Table 2. In this situation, the direction of deformation is normal to that of the force. 

6.2. Simulation of Example 2 

In the simulation model of the compliant parallel mechanism, the stiffness of the three springs is equal to 10 N /mm. With Eq. (68), 
the stiffness of the two angular springs in the compliant serial mechanism is 2560 N ⋅ mm/rad, and the stiffness of the linear spring is 
10 N/mm. As a compliant mechanism with planar 3 DOFs, the forces collinear with x axis and y axis as well as the torque about z axis 
are imposed on the point (0, 0, 0) mm to analyze the elastic behaviors. The deformations of the serial and parallel configurations in 
both theory and simulation are plotted in Fig. 16. Similar to Example 1, the elastic behaviors of the compliant serial mechanism 
approach to the ones calculated theoretically. For the compliant parallel mechanism, the translational stiffness along x axis and the 
angular stiffness about z axis are almost the same as that of its serial counterpart. By contrast, the translational stiffness along y axis 
gains gradually, as the force increases from − 10 to 10 N. The mean margin of the stiffness errors along y axis is about 11.97%, when the 
force is in the range of [− 10, 10] N. By contrast, the mean margin of the stiffness errors is 6.98%, when the force belongs to [− 5, 5] N. 
Similar to Example 1, the stiffness approaches to that of its serial counterpart as well as the ideal stiffness in theory, when the amplitude 
of the force is close to zero. 

6.3. Simulation of Example 3 

In the simulation model of the compliant serial mechanism, the stiffness of the four angular springs is 2560 N ⋅ mm /rad. With Eq. 
(81), the stiffness parameters of the two linear springs in limbs 1 and 4 of the compliant parallel mechanism are equal to 9.92 N /mm, 
and the stiffness parameters of the two linear springs in limbs 2 and 3 are equal to 10 N/mm. As a compliant mechanism with spatial 4 
DOFs, the forces collinear with x axis, y axis, and z axis are applied on the point (0, 0, 0) to analyze the elastic behaviors. The de-
formations of the serial and parallel configurations in both theory and simulation are depicted in Fig. 17. It is easily seen that the elastic 
behaviors of the compliant serial mechanism are close to that in theory. For the compliant parallel mechanism, the translational 
stiffness along z axis is almost the same as that of its serial counterpart, as shown in Fig. 17(c). However, as the force increases from 
− 10 to 10 N, the translational stiffness along x axis decreases (see Fig. 17(a)), with the mean margin of stiffness errors about 12.33%. 
By contrast, the translational stiffness along y axis gains gradually (see Fig. 17(b)), with the mean margin of the stiffness errors about 
12.93%. While the mean margins of the stiffness errors along x and y axes reduce to 3.66% and 3.75%, respectively, when the forces are 
bounded by − 5 N to 5 N. When the forces along x axis and y axis are close to zero, the translational stiffness approaches to the ideal 

Table 1 
Deformations of the compliant mechanisms in Example 1 when the force (parallel to z axis) is applied on the point (0, 0, 0) mm.  

F imposed on the point (0, 0, 0)mm (N)  Displacement along x axis (mm)  Displacement along y axis (mm)  Displacement along z axis (mm)  
Parallel Serial Parallel Serial Parallel Serial 

[ 0 0 − 10 ]
T  2.40 × 10− 7  1.17 × 10− 8  − 9.18 × 10− 8  6.85 × 10− 8  − 1.57 × 10− 6  − 9.41 × 10− 5  

[ 0 0 − 5 ]
T  1.24 × 10− 7  6.07 × 10− 9  − 3.41 × 10− 8  3.42 × 10− 8  − 7.87 × 10− 7  − 4.70 × 10− 5  

[ 0 0 5 ]
T  − 1.33 × 10− 7  − 6.59 × 10− 9  9.41 × 10− 9  − 3.42 × 10− 8  7.87 × 10− 7  4.70 × 10− 5  

[ 0 0 10 ]
T  − 2.76 × 10− 7  − 1.37 × 10− 8  − 7.16 × 10− 9  − 6.85 × 10− 8  1.57 × 10− 6  9.41 × 10− 5   

Table 2 
Deformations of the compliant mechanisms in Example 1 when the force (parallel to z axis) is applied on the point (r, 0, 0) mm.  

F imposed on the point (r, 0, 0)mm (N)  Displacement along x axis (mm)  Displacement along y axis (mm)  Displacement along z axis (mm)  
Parallel Serial Parallel Serial Parallel Serial 

[ 0 0 − 10 ]
T  − 0.99 − 0.9391 − 1.48 × 10− 2  1.66 × 10− 7  3.42 × 10− 2  2.73 × 10− 2  

[ 0 0 − 5 ]
T  − 0.4968 − 0.4846 − 3.89 × 10− 3  6.93 × 10− 8  9.13 × 10− 3  7.21 × 10− 3  

[ 0 0 5 ]
T  0.5048 0.5158 − 4.32 × 10− 3  − 8.10 × 10− 8  1.09 × 10− 2  8.45 × 10− 3  

[ 0 0 10 ]
T  1.0233 1.0635 − 1.83 × 10− 2  − 1.63 × 10− 7  4.86 × 10− 2  3.56 × 10− 2   
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stiffness in theory. 
In summary, the elastic behaviors of the compliant serial mechanism are almost the same as the ideal ones calculated theoretically, 

while the stiffness/compliance of the compliant parallel mechanism may vary monotonically with respect to the force imposed on the 
platform in some directions. If the amplitude of the force is small, the stiffness/compliance of the parallel configuration is close to that 
of the theoretical model. The reason of the stiffness errors lies in that the displacement caused by the force leads to the change of the 
mechanical configuration. For parallel configurations, the change exists in all its limbs, while the change affect only a few joints of a 
serial configuration, not all. Thus the compliant parallel counterpart exhibits larger errors than the serial one. 

7. Conclusion and future work 

This paper introduced a geometrical interpretation of dualities of general compliant mechanisms using repelling screws, upon 
which both orthogonal and dual properties of the twist and wrench spaces were investigated and revealed. With the inclusion of 
constraints, the generalized interpretation of the mechanical geometries also laid a solid foundation for further analysis, such as errors, 
dexterity, and dynamics, etc. A novel approach for configuration transformation between compliant parallel and serial mechanisms 
was proposed, which makes a step forward from the mechanism-equivalent approach by modeling the relationships of the repelling 
screws and stiffness/compliance of compliant parallel and serial mechanisms, without the decomposition of the stiffness/compliance 
matrix. This paper extended the concept of dual elastic mechanisms to more general cases, including rank deficient compliances and 
constraints. With the proposed approach, the spatial elastic behaviors having constraints and/or rank deficiencies can be realized by 
either a compliant parallel or serial mechanism. Three representative examples were included to interpret the geometrical meaning of 
the stiffness/compliance and repelling screws. The equivalent kinematics and stiffness/compliance of the complaint parallel and serial 

Fig. 16. Deformations of the compliant mechanisms in Example 1: (a, b) when the force is collinear with x axis and y axis, respectively, and (c) 
when the torque is about z axis. 
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mechanisms were then discussed and illustrated. Moreover, two methods were proposed to adjust the target configuration so as to 
better suit the working conditions and installation limits. In terms of applications, one can use these methods to judiciously select a 
better mechanism geometry for a specified stiffness/compliance. The corresponding simulation models were established to verify the 
proposed approach, which demonstrated a good agreement between the geometrical and elastic properties of compliant parallel and 
serial mechanisms. The results also indicate that the proposed interpretation is extremely intuitive and provides a geometrical meaning 
for dualities of general compliant mechanisms. Hence, it can be potentially used in designing or discovering new compliant parallel or 
serial mechanisms. 

In this paper, we mainly address the inner relations between the kinematics, statics, stiffness and compliance, as well as parallel and 
serial compliant systems. In real applications of compliant mechanisms, constraints may be designed on each limb, which can be 
equivalent to being imposed on the end effector. It will be explained in detail in our future work. Other aspects such as the geometrical 
and elastic properties of compliant mechanisms with redundant flexible/constraint limbs, and complicated hybrid flexible systems will 
be considered in future studies. 
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Fig. 17. Deformations of the compliant mechanisms in Example 3 when the force is collinear with (a) x axis, (b) y axis, and (c) z axis.  
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