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a b s t r a c t 

Accurate ellipse detection in image streams at real-time execution is an open challenge. We present a 

novel fast and robust ellipse detection method. The method adopts arcs selection, smart grouping, and 

repeated utilization of gradient information to significantly reduce the computations otherwise needed 

without compromising the detection effectiveness. Geometric properties calculable with few computa- 

tions, such as arc smoothness, relative placement of curves, and region of confidence for ellipse centres, 

are utilized for this purpose. An exhaustive sensitivity analysis of the method’s control parameters has 

been performed. It reveals range of values that support consistent performance over diverse challenging 

datasets with complex background, multiple differently sized ellipses, and occluded, overlapping ellipses. 

The method’s performance is compared with six state-of-the-art detectors over four diverse datasets. 

Among all the tested methods, the proposed method demonstrates the best balance between detection 

effectiveness (the best or the second best F-measure scores) and computation time ( > 40 Hz) across all 

the datasets. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

An ellipse (or a circle) is a common man-made nonlinear geo-

metric shape. The ellipse detection from image streams is a com-

mon need in a variety of applications such as industrial inspection

[1] , medical diagnosis [2,3] , recognition of traffic signs [4] , security

[5] , face recognition [6,7] , and object tracking for a robotic plat-

form [8–10] . Thus, it is important to realize a robust ellipse detec-

tion method for real images and image streams. However, ellipse

detection is a challenging task. The presence of noise substantially

overwhelms edge pixels of real ellipses and breaks an ellipse’s

boundary into multiple disconnected arc segments. This issue, in

addition to complex background, causes degradation in the perfor-

mances of the existing ellipse detection methods in terms of either

the detection accuracy or the execution time, often both. Moreover,

efforts to improve detection accuracy often result in longer exe-

cution time, while algorithmic effort s in reducing execution time

often compromise the detection accuracy. In our paper, we focus

on improving the ellipse detection performance, in terms of both

the detection accuracy and the execution time, even while deal-

ing with occluded ellipses, overlapping ellipses, and incomplete el-

lipses in images taken in practical scenarios. 
∗ Corresponding author. 

E-mail address: dong0076@e.ntu.edu.sg (H. Dong). 
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.1. Related work 

Five-dimensional Hough Transform (HT) is a classical method

or detecting ellipses. Regardless of the robustness, the standard

ough transform [11] involves a large amount of computational

ost. To improve the computational efficiency of HT, various HT-

ased approaches [12–16] , such as Randomized Hough Transform

RHT) [15] and Probabilistic Hough Transform (PHT) [16] , have

een developed. However, these variants of HT cannot reach video

ate computation speeds due to the process of voting among nu-

erous candidates. Hybrid methods that combine Hough Trans-

orm and other geometric approaches have also been proposed

o overcome the shortcomings of Hough Transform. For instance,

akir et al. [17] combine feature-based models with HT to improve

he detection accuracy. Chen et al. [18] integrate the advantages of

T and edge segment detection, described next, which allows its

pplications to industrial scenarios. 

Another class of ellipse detection approaches is edge segment

etection techniques. Methods in this class exploit the connectiv-

ty between edge pixels to detect ellipses. The main steps of these

ethods are to extract arcs and then group them by exploiting ge-

metric or algebraic properties of ellipses. Specifically, edge arcs

hat may consist of an ellipse are found by variety of techniques

uch as the statistical regression method [19] , curve segmentation

y fitting a set of short line segments on edges [20–26] , connec-

https://doi.org/10.1016/j.patcog.2018.03.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.03.023&domain=pdf
mailto:dong0076@e.ntu.edu.sg
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Fig. 1. The flowchart of the proposed detector. 
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ivity and curvature conditions [22,27] . Subsequently, these arcs

re grouped according to the convexity-concavity [21,28,29] , arc

urvature [21] , and geometric constraints [1,30–33] . Lastly, ellipses

re fitted on the grouped arc candidates using RANSAC [19,32] or

east squares fitting technique [28] . Prasad et al. [21] use arc con-

exity to determine search regions where suitable arc candidates

or grouping may be located. Fornaciari et al. [28] use geometric

onstraints as a selection strategy of arcs belonging to the same

llipse and estimate parameters by decomposing the parameter

pace. Mai et al. [22] adopt line segments to approximate potential

lliptic-arcs according to connectivity and curvature conditions. Bai

t al. [29] use the property of elliptical concavity to group arcs for

dentifying candidate ellipses. Liu et al. [33] propose a hierarchi-

al approach which is motivated by the fact that any segment of

n ellipse can identify itself in ellipse reconstruction by geometric

onstraints. The edge segment detection methods are regarded as

he most effective in detecting multiple ellipses in digital images

nd require less computational cost than HT-based methods. How-

ver, because of dependence on the preciseness of arcs detected,

he detection accuracy drops when these methods are applied to

mages containing complicated occluded contours. 

Many algebraic functions or geometric characteristics have been

tilized for selection of arc segments to improve the performances

f ellipse detectors. For instance, symmetry of arcs in image is ap-

lied for decomposing the parameter space and reducing the clus-

ering parameters [2,34–36] . Distance measures are used to per-

orm registration of a set of arcs [36–38] . Mulleti et al. [39] rely on

he sampling structure of finite-rate-of-innovation signals to esti-

ate the parameters of ellipses from partial data. P ̆atr ̆aucean et al.

40] propose a line segment and elliptical arc detector without any

arameter tuning based on a contrario theory. Chang Liu et al.

41] fit the elliptical projections of the cross sections of a surface

f revolution with the given intrinsic matrix of a camera. Jia et al.

42] use a projective invariant operator to significantly prune the

ndesired candidates and pick out elliptical ones. Points and tan-

ents together are regarded as the basic units of information to

nd an ellipse in Ref. [43] . The aforementioned methods can de-

ect ellipses with less bias, but the performances of these methods

re inadequate to detect occluded and overlapping ellipses when

nput images contain a large amount of noise. 

.2. Proposed method 

In this paper, we propose a novel fast and robust ellipse de-

ector based on geometric properties of elliptic arcs and gradient

nalysis, which relieves the shortcomings of the ellipse detectors

resented previously. The work provides improvement of execution

peed and accuracy of ellipse detection, providing a good balance

etween these two important and often conflicting aspects of per-

ormance of ellipse detection algorithms. The schematic flowchart

f the proposed method is presented in Fig. 1 . We briefly describe

hem below to create context for the discussion of novelty. 
Arc extraction and classification: After obtaining the edge im-

ge from a given image, we pre-process the edge image to remove

traight lines and noise, which speeds up the subsequent proce-

ures. We first classify pixels in edge image according to the ori-

ntations of the gradients at the edge pixels and then compute

urves (or arcs) as sets of 8-connected edge pixels. Building upon

he idea of edge segment detection, we use line segments to fit a

urve and then calculate the intersection angles between consecu-

ive line segments to confirm sudden changes where the curve is

plit into potentially elliptic arcs. Since this procedure may gener-

te short arcs or discrete pixels that do not have enough curvature

o constitute an ellipse, we identify such curves and remove them

n the pre-processing stage itself. 

Ellipse detection: The gradient information at edge pixels is

sed for classifying the arc candidates into four quadrants. Then,

e utilize the fact that arcs belonging to an ellipse have the same

llipse centre and their positions have well defined placement in

he space to define two geometric constraints, which permit iden-

ification of sets of arcs potentially belonging to the same ellipses.

e confirm the centre of such a set of arcs using a mean-shift

lustering algorithm and obtain other parameters in a decomposed

arameter space. The existing methods that determine ellipse cen-

res by voting or accumulating in a two/dimensional parameter

pace suffer in the presence of noise as the noise reduces the accu-

ulation of votes at the actual centre of the ellipses. Unlike these

ethods, the proposed method of confirming the ellipse centre us-

ng mean/shift clustering can realize high accuracy based on a sta-

istical principle. 

Ellipse verification: After detecting ellipses from all the sets of

rcs, validation and clustering procedures can extract ellipse can-

idates with high confidences. Finally, a strategy for false detection

ontrol based on geometric property of ellipse is used to alleviate

alse detections. 

.3. Novelties of the proposed method 

The strengths of this work are derived from several novelties

cross the algorithmic steps, each having a specific impact on

he performance of our method. The guiding principle behind the

ovel features of our proposed method is to achieve good perfor-

ance of the current task with minimum computations and allevi-

te the computational requirements of the subsequent tasks. This

rinciple helps us to reduce execution time as compared to con-

emporary edge following methods significantly. The novelties are

numerated below: 

1) This paper presents an ellipse detection method that combines

the advantages of arc extraction and arc grouping. Arc detection

involves important arc splitting steps, where our novel propo-

sitions given in points 2 and 3 below help in precise arc detec-

tion at low computation expense. Arc grouping using geometric

constraints, discussed more in points 4 and 5 below, guarantees

the effectiveness of ellipse detection and optimizes the compu-

tation cost. 

2) In the step of smooth arc extraction, we propose a novel

approach of identifying the precise splitting points (sudden

changes) in order to achieve better segmentations from curves

to smooth arcs that may belong to ellipses. A coarse search for

sudden changes is first performed with a big range, and then

such points are determined with a finer scope. 

3) We use just one inequality with angle vectors to confirm split-

ting points (sudden changes), as compared to more than one in-

equalities used by other contemporary methods. This provides

advantage of computation speed over other methods. 

4) The direction of vector formed by bounding box enclosing an

arc is used for determining a convexity-concavity of arc pre-
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cisely to classify an arc further. This speeds up the efficiency of

grouping of arcs. 

5) We adopt the ratio of half of the circumference of the bound-

ing box enclosing an arc and the sum of the semi-axes lengths

to measure the integrity of ellipse to improve the detection ac-

curacy. This is significantly faster than other more complicated

approaches of measuring the integrity of the ellipse. 

6) We propose a new approach of false determination control to

determine detection results based on the intrinsic geometric at-

tribute of ellipse expressed by a mathematical model, which

avoids false detections effectively. 

1.4. Outline of the paper 

The rest of this paper is organized as follows. Section 2 presents

a new method of arc extraction by confirming sudden changes

where a curve is to be split. Two geometric constraints applied for

identifying sets of arcs potentially belonging to the same ellipse

and the method of determining ellipse parameters are presented in

Section 3 . Section 4 presents the procedures of ellipse verification

and clustering. A strategy with false detection control is provided

in Section 5 . Section 6 presents experimental results including (a)

parameter tuning and sensitivity analysis experiments, (b) ellipse

detection experiments for synthetic images and real images with

complex scenarios, and (c) validation of the superior performance

of the proposed method in comparison with six state-of-the-art el-

lipses detectors. Finally, the work is concluded in Section 7 . 

2. Arc extraction and classification 

2.1. Pre-processing stage 

The pre-processing stage helps to speed up the subsequent pro-

cesses and improve the computational efficiency [28,32,42] . First,

Canny edge detector [44] with auto-thresholding is applied to ob-

taining the edge image for an input image. Edge pixels are denoted

as p i = ( x i , y i , ηi ) , where i = 1 , 2 , . . . , N, ( x i , y i ) are the coordinates

of the i th edge pixel, ηi is the gradient angle at the edge pixel

computed using Sobel derivatives [28] , and N is the number of

edge pixels. Subsequently, to obtain non-branched edge curves, the

curves are classified into two classes based on edge directions. Due

to the discrete characteristics of the digital image, the accurate gra-

dient direction of the curve at a pixel [45] can not to be calculated.

However, we are interested in the general orientation of the gra-

dient and not in the exact gradient vector. Therefore, we use only

the sign of the gradient as representative of the general orientation

of the gradient. Each edge point p i is assigned with either a posi-

tive or negative direction by the following gradient’s sign function

X( p i ) , 

X ( p i ) = 

{
+ , sign ( d x i ) · sign ( d y i ) > 0 

−, sign ( d x i ) · sign ( d y i ) < 0 

(1)

The function X( p i ) becomes zero when the Sobel derivatives dx

or dy are zero, i.e. the gradients are along the vertical or horizontal

directions. Thus, after the classification of curves, an edge pixel p i 
whose gradient sign function is zero are removed from the edge

image. 

The 8-connectivity of two consecutive edge points in the same

direction is used to extract connected edge curves. Since short

curves may be a result of noise and are inconsequential in ellipse

detection due to the lack of curvature, we identify and remove

short edge curves as described next. We use an oriented bound-

ing box with the minimum area, which is denoted as OBB min , to

enclose a curve [46] . If the ratio of the long side to short side of

OBB min is more than a threshold thre r , we can discard this curve

since it may be a line segment or its radius is too big, implying
hat the centre of the ellipse is not within the image. Moreover, if

he area of OBB min is less than a threshold thre a , this curve is also

eadily removed because it may be a result of noise or a line seg-

ent that is not salient enough to contain information pertaining

n ellipse. The remaining curves are deemed to be curve candi-

ates that may make up ellipses and are used in the subsequent

teps for ellipse detection, as shown in Fig. 2 . All the thresholds

re investigated in Section 6 . 

.2. Arc extraction 

It is well known that the edge curvature of an ellipse changes

ontinuously and smoothly. To detect ellipses, we need to ob-

ain the edge curves with continuous and smooth curvature. A

mooth curve does not have a sudden change in curvature, char-

cterized by the amount of change or the direction of change [21] .

n this paper, the amount of change of curvature and the direction

hange of curvature are generally referred to as the turning corner

nd inflexion point, respectively. All the points on any curve have

he same gradient orientations after extracting the edge image by

anny edge detector [44] with auto-thresholding. There exist two

dditional cases of sudden changes in edge curves, as shown in

ig. 3 . 

We use a series of line segments to fit an edge curve to ob-

ain an approximate representation of the curvature of the edge

urve [18,21,31,33,47,48] . These line segments are used for extract-

ng smooth edge curves. Specifically, depending on the pixel order

rom left to right on a curve, we explore points, such as the turn-

ng corner and inflexion point, which introduce irregularities in the

urvature, and break the edge curve at those points. The methods

hat explore sudden changes [18,21,31,33,47,48] cannot do so with

recision since they investigate the changes only at the dominant

oints of the curve obtained by fitting the line segments rather

han every point on the curve. We present an approach for explor-

ng points from a large range to a small scope for dealing with this

ssue. 

First, we perform a coarse search for turning corners and in-

exion points. For this, we adopt the method presented by [21] to

t a series of line segments { l 1 , l 2 , l 3 , . . . , l n } on an edge curve. θ i 

enotes the angle between a pair of consecutive line segments

 l i −1 , l i } , i = 2 , 3 , . . . , n , and the direction of θ i is from l i −1 to l i . In

erms of the curvature of an edge curve, the value of angle θ i is an

ndicator of the change. If θ i is small, it indicates that the amount

f change in curvature is small so that a part of a curve fit by line

egments is considered as collinear ones. If the angle θ i is too big,

he point p i joining two consecutive line segments is regarded as

 turning corner ( Fig. 4 (A)). Specifically, if the angle θ i satisfies the

ollowing inequalities, the point p i is determined as a turning cor-

er, 

 

θi | > thr e θ . 

The sign of the angles formed by a series of consecutive line

egments represents the direction of the curvature in a curve. In

ther words, if the sign of an angle θ i is different from that of the

revious angle θi −1 , it implies that there is a change in the direc-

ion of a curve. If θi −1 and θ i have the same signs, their relation-

hip conforms to the expression | | θi | − | θi −1 | | = | θi − θi −1 | . We use

he following inequality to identify an inflexion point p i in order

o make a coarse decision on where the edge curve may be split,

s shown in Fig. 4 (A), 

 | θi | − | θi −1 | | < | θi − θi −1 | . 
Thus, the turning corners and inflexion points determined so

ar may be such points at which an edge curve needs to be split to

btain smaller smooth curves. 
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Fig. 2. The initial image(A); the edge images along two edge directions by gradient signs (B,C);the edge images after the process of 8-connectivity(D,E);the arcs enclosed by 

oriented bounding boxes(F,G);the image by a pre-processing procedure(H). 

Fig. 3. The curves with the large change of curvature (A) and the change of direction of curvature (B). The green frames represent bounding boxes enclosing the split arcs. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. The exploration of an accurate sudden change (A) and the over-splitting case 

due to over-many sudden changes (B). The green dot represent a rough sudden 

change (A); the red one donates the precision sudden change (A); the three red 

dots that indicate three sudden changes lead to an over splitting (B). (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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Fig. 5. The convex arc (A) and the concave arc (B). 
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Second, by exploring a certain number of pixels on either side

f the coarsely determined points of sudden changes, we can ob-

ain points of sudden change precisely. The gradient ηi of pixels is

pplied to calculating the tangent angle of each pixel [32,40] . The

wo inequalities above are then applied for precise determination

f the points that are turning corners or inflexion points, as shown

n Fig. 4 (B). Since the values of ηi have been computed in the pre-

rocessing step already, the extra computations for precise deter-

ination of points of sudden changes is meagre. Moreover, image
oise around the edge pixels may introduce several turning corners

r inflexion points on an otherwise smooth curve [18] , thus result-

ng into several small arcs after the splitting that are not salient

or ellipse detection. In order to reduce the subsequence process-

ng time, we reuse the pre-processing approach to removing arcs

nclosed by small oriented bounding boxes. Table 1 provides the

pecific algorithm for extracting arcs that may consist of an ellipse.

.3. Arc classification based on the convexity-concavity 

The convexity-concavity property of each arc is used for classi-

ying arcs, which are now smooth curves of sufficient length, hav-

ng no pixels with gradients along the horizontal or vertical direc-

ions and no sudden changes in the curvature. The arcs are en-

losed by bounding boxes such that the edges of the bounding

oxes are along the horizontal or vertical directions, as shown in

ig. 5 . This is different from the previously used bounding boxes
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Table 1 

The algorithm of smooth arc extraction. 

Smooth arc extraction by detecting the turning corners and inflexion points 

Input: thre θ , curves, thre a 
Output: smooth curves consisting of an ellipse 

For i = 0 to the size of curves do 

Fit curve i by line segments; 

Calculate the angles θ formed by a series of consecutive line segments 

For j = 1 to the size of line segments do 

If ( abs ( θ j ) > thre θ or abs ( abs ( θ j ) − abs ( θ j−1 ) ) < abs ( θ j − θ j−1 ) ) 

For m = 0 to the size of the i th curve do 

If (line_segments[ j ].x = = curve_ i [m] .x && line_segments[ j ].y = = curve_ i [m].y) 

For h = curve[ i ].(x-5) to 10 (from curve[ i ].(x-5) to curve[ i ].(x + 5)) do [ 1 ] 

Calculate the tangent angle δh of the pixel 

If ( abs ( δh ) > thre θ or abs ( abs ( δ j ) − abs ( δ j−1 ) ) < abs ( δ j − δ j−1 ) ) 

Reserve these points in the container F ; 

Reserve points with the maximum δh chosen from the container F in container E ; 

For k = 0 to the size of E do 

For n = E [ k ] to E [ k + 1 ] do 

Obtain the area �n of each bounding box that encloses curve[ i ][ k ] 

If ( �n > thre a ) 

Reserve curve [ i ][ k ] in the container C . 

Fig. 6. The original image (A); the edge image(B); arc classification by the gradient directions (C); arc classification in the four quadrants via the convexity-concavity(D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q  

b  

t  

s  

(  

t  

a  

a  

b  

T  

t  

t

3

 

p  

m

�

w  

t  

t  

t  

s  

b  

�  
of minimum area enclosing a curve snugly and may be oriented in

the image space randomly, as seen in Fig. 2 (F,G). For such bounding

box with edges aligned with the horizontal and vertical directions

fitted on an arc e, O represents the centre of the bounding box

and the middle point of the line segment (diagonal) jointing two

endpoints of an arc. M is the midpoint of the arc along the hori-

zontal direction, i.e. it is the point of intersection of the arc with a

line joining the midpoints of the horizontal edges of the bounding

box. If the vector direction δ of 
−→ 

OM is positive, the arc is labelled

as convex, otherwise as concave. We define a function �( e ) to de-

scribe the convexity-concavity of an arc as follows, 

�( e ) = 

{
+ , δ > 0 ;
−, δ < 0 . 

(2)

Based on the functions X( p i ) (see Eq. (1) ) and �( e ) (see Eq. (2) ),

an arc extracted can be classified into four quadrants ( Fig. 6 ), 

�( a ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

I , 〈 X ( p i ) , �( e ) 〉 = 〈 + , + 〉 
II , 〈 X ( p i ) , �( e ) 〉 = 〈 −, + 〉 
III , 〈 X ( p i ) , �( e ) 〉 = 〈 −, −〉 
IV , 〈 X ( p i ) , �( e ) 〉 = 〈 + , −〉 

(3)

where e represents an arc with a sequence of connected pixels

{ ( p 1 , p 2 , . . . , p i , . . . , p n ) } , and I, II, III, IV denote the first, second,

third, fourth quadrants, respectively. We note that the entire arcs

are used and not just the line-segmented approximations of arcs

identified in Section 2.2 . These quadrants denote the quadrants in

which the edge curves would lie if they belonged to a hypotheti-

cal ellipse and the centre of such ellipse is used as the origin. See

example in Fig. 6 for an illustration. 

3. Ellipse detection 

Based on the arc classification described above, we choose two

arcs τ = ( a a , a ) from the arcs distributed in four quadrants as a
ab b 
uadrant constrained arc set, which indicates that the arcs likely

elong to the same ellipse. Subscripts a and b represent two dis-

inct quadrants. Accordingly, six combinations of a quadrant con-

trained arc set can be listed as follows, ( a I , a II ), ( a I , a III ), ( a I , a IV ),

 a II , a III ), ( a II , a IV ), and ( a III , a IV ), as shown in Fig. 7 . We further re-

ain only those sets that satisfy the constraint of relative position

nd calculate the centres of the ellipses that likely constitute these

rc sets as their edges. Then, we create super-sets of these arc sets

ased on the proximity of the centres estimated by the arc sets.

his is performed on the basis that if two centres estimated by

wo arcs lie in an area with an acceptable range, it is highly likely

hat such arc sets belong to the same ellipse. 

.1. The selection of arcs consisting of an ellipse 

The function � is defined to describe the constraint on relative
osition between two arcs to discard an arc set whose arcs cannot
ake up the same ellipse [28] as follows, 

( a a , a b ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

a I 
l ( x ) − a II 

r ( x ) i f ( a a , a b ) ∈ ( I , II ) 

min 
(
a I 

r ( y ) − a III 
l ( y ) , a I 

r ( x ) i f ( a a , a b ) ∈ ( I , III ) 

− a I I I 
l ( x ) 

)
a I 

r ( y ) − a IV 
l ( y ) i f ( a a , a b ) ∈ ( I , IV ) 

a II 
l ( y ) − a I I I 

l ( y ) i f ( a a , a b ) ∈ ( II , III ) 

min 
(
a II 

l ( y ) − a IV 
r ( y ) , a IV 

l ( x ) i f ( a a , a b ) ∈ ( II , IV ) 

− a II 
r ( x ) ) 

a IV 
l ( x ) − a I I I 

r ( x ) i f ( a a , a b ) ∈ ( III , IV ) 

here a l 
i 
(x ) , a r 

i 
(x ) , a l 

i 
(y ) , and a r 

i 
(y ) represent the arc coordinates of

he left most and the right most endpoints along the x and y direc-

ions in the i th quadrant, respectively. In Fig. 7 , along the horizon-

al axis x, a I 
l ( x ) must be bigger than a II 

r ( x ) and a III 
r ( x ) that must be

maller than a IV 
l ( x ). Similarly, along the vertical axis y, a I 

r ( y ) must

e bigger than a III 
l ( y ) and a IV 

r ( y ) which are smaller than a II 
l ( y ). If

( a a , a b ) is less than the tolerance thre p , the set is discarded as
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Fig. 7. The four grouping phases. I, II, III and IV represent the first, second, third and fourth quadrants. a i 
l and a i 

r indicates the left and right endpoints of an arc and i is the 

number of the quadrant where an arc rests. 

Fig. 8. Illustration of the computation of the elliptic centre. ∇ f ( P 1 ), ∇ f ( P 2 ), ∇ f ( P 
′ 
1 ) , ∇ f ( P 

′ 
2 ) are the grandient vectors of the arc points P 1 , P 2 , P 

′ 
1 , and P 

′ 
2 ,respectively; l i denote 

the line formed by the points P i and P 
′ 
i 

that are symmetrical regarding the centre of an ellipse, i = 1 , 2 (A). l 1 and l 2 represent the lines through the middle points of parallel 

chords formed by the arcs a a and a b , respectively (B). P a and P b are the intersection points of the tangent lines through the end points ( P 1 , P 2 , P 3 , P 4 ) of the arcs a a and 

a b ,respectively; l 1 and l 2 represent the lines passing the middle points ( P 12 , P 34 ) of the line segments ( P 1 P 2 , P 3 P 4 ) and the intersection points ( P a , P b ),correspondingly(C). C 12 

denotes the intersection point of the lines l 1 and l 2 . 
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Fig. 9. Illustration of the presented calculation method of the elliptic centre. C 12 

denotes the intersection of the lines l 1 and l 2 ; C 
34 represents the intersection of the 

lines l 3 and l 4 . d center represents the distance between C 12 and C 34 . The shifted in- 

tersections (yellow dots) are formed by the shifted lines (yellow lines) jointing the 

midpoints of the chords and the intersections of the tangent lines when the slope 

of the line through the midpoint P 34 of the arc a b is not correct due to the image 

noise. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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(  
mprobable for fitting ellipse. The value of thre p is set as 1 since

he pixels on the coordinate axes have been already discarded. 

.2. Confirmation of ellipse centre 

The geometric characteristics used for retrieving the centres of

he ellipses are presented here. For an ellipse, it is obvious that the

radient vectors of the edge points that are symmetrical with re-

pect to the centre are parallel or antiparallel [49–51] , as shown in

ig. 8 (A). We further use the following geometric property of el-

ipses. The intersection of two lines passing the midpoints of two

ifferent sets of parallel chords at a pair of arcs is the ellipse cen-

re [5,28,42] , as shown in Fig. 8 (B). The approach to calculate the

llipse centre by parallel chords is robust to outliers with a small

ost in computational efficiency. However, this approach is ineffec-

ive if the lengths of arcs are very small. Specifically, if the num-

er of points on an arc is small, the distance between two near-

st parallel chords formed from that arc alone is also tiny. In this

ase, the noise has influence on the centre position. The geomet-

ic properties of points and tangents in ellipses, shown in Fig. 8 (C),

ay be instead used to find ellipse centres [12,21,43,49,52] . In this

pproach, the ellipse centre is the intersection of lines connecting

he middle points of chords and the intersection formed by tan-

ent lines through the ends of arcs. Although this method can de-

ect the centre of a small ellipse, the slopes of tangent lines could

ontain many errors due to the image noise and the digitization of

he image [25] . 

Based on the considerations above, we propose a new approach

or calculating the ellipse centre here. Unlike the geometric meth-

ds in [21,28] , the proposed method need not consider the size of

he ellipse or precise tangent information for robustness to noise

nd computational efficiency. As shown in Fig. 9 , we denote the

idpoint of the arcs a a and a b as P 12 and P 34 , respectively. Let us

onsider a set of four distinct pixels, P 1 , P 2 , P 3 , and P 4 on elliptic

rcs, and P a , P a , P b and P b represent the intersections of the tan-

1 2 1 2 
ent lines through these four points, respectively. Further, we con-

truct a line l i that passes through P a 
i 

and the midpoint of the line

egment P i P 12 and a line l j connecting P b 
j 

and the midpoint of the

ine segment P j P 34 ; the lines l i and l j must pass through the ellipse

entre [53] , where i = 1 , 2 and j = 3 , 4 , as seen in Fig. 9 . 

If the coordinate and gradient of the endpoints and midpoint of

n arc are expressed as { x i , y i , θi | i = 1 , 2 } and { x 12 , y 12 , θ12 } respec-

ively, the coordinates of the midpoints ( m 1 , m 2 ) of the line seg-

ents P 1 P 12 and P 12 P 2 are derived using Eq. (4) . The coordinates of

he intersections ( P a 
1 
, P a 

2 
) of three tangent lines through the points

 1 , P 2 , P 12 are expressed in Eq. (5) . We calculate the slopes ( q 1 , q 3 )

f the line segments P 1 P 12 and P 12 P 2 using Eq. (6) and the slopes

 q 2 , q 4 ) of the lines ( l 1 , l 2 ) passing through point pairs ( m 1 , P 
a )

1 
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Fig. 10. Geometric schematic of parameter estimation. M a and M b represent the 

intersections of the tangent lines through the points M 1 , M 2 , M 3 , M 4 of two arcs 

a a , a b ,respectively; L 1 and L 2 denote the lines passing the midpoints M 12 , M 34 of the 

line segments M 1 M 2 , M 3 M 4 and the intersections M a , M b ; A and B are the long and 

short semi-axes lengths; ρ indicates the orientation of an ellipse; ( x i , y i ) and ( x o , 

y o ) are the coordinates of the points on an arc in the world coordinate system and 

the ellipse coordinate system, respectively. 
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and ( m 2 , P 
a 
2 

) are obtained through Eq. (7) , respectively. 

x m 1 
= 

x 1 + x 12 

2 

, y m 1 
= 

y 1 + y 12 

2 

, 

x m 2 
= 

x 2 + x 12 

2 

, y m 2 
= 

y 2 + y 12 

2 

; (4)

x P a 
1 

= 

y 12 − θ12 x 12 − y 1 + θ1 x 1 
θ1 − θ12 

, y P a 
1 

= 

θ12 y 1 − θ1 y 12 + θ1 θ12 ( x 12 − x 1 ) 

θ1 − θ12 

, 

x P a 
2 

= 

y 12 − θ12 x 12 − y 2 + θ1 x 2 
θ2 − θ12 

, y P a 
2 

= 

θ12 y 2 − θ2 y 12 + θ2 θ12 ( x 12 − x 2 ) 

θ2 − θ12 

; (5)

q 1 = 

y 12 − y 1 
x 12 − x 1 

, 

q 3 = 

y 12 − y 2 
x 12 − x 2 

; (6)

q 2 = 

y P a 
1 

− y m 1 

x P a 
1 

− x m 1 

= 

( θ1 + θ12 ) ( y 1 − y 12 ) + 2 θ1 θ12 ( x 12 − x 1 ) 

2 ( y 1 − y 12 ) − ( θ1 + θ12 ) ( x 12 − x 1 ) 
, 

q 4 = 

y P a 
2 

− y m 2 

x P a 
2 

− x m 2 

= 

( θ2 + θ12 ) ( y 2 − y 12 ) + 2 θ2 θ12 ( x 12 − x 2 ) 

2 ( y 2 − y 12 ) − ( θ2 + θ12 ) ( x 12 − x 2 ) 
. (7)

Thus, given an arc, the coordinates of the centre C 12 can be de-

rived depending on the proposed method as follows, 

x C 12 = 

y m 2 
− q 4 x m 2 

− y m 1 
+ q 2 x m 1 

q 2 − q 4 
, 

y C 12 = 

q 2 y m 2 
− q 4 y m 1 

+ q 2 q 4 ( x m 2 
− x m 1 ) 

q 2 − q 4 
. (8)

Through the above analysis, we can obtain the centres C 12 , C 34 

of a pair of a a , a b . If the distance of the centres C 12 , C 34 is smaller

than a given threshold thre center which accounts for errors due to

digitization and image noise, the third constraint of the selection

strategy is satisfied. 

In the subsequent stage, the ellipse parameters are estimated

only for a pair of the arcs a a , a b that satisfy the presented three ge-

ometric constraints, namely quadrant constraint, relative position

constraint, and centre proximity constraint. For such pairs, we re-

fine the estimates of the centres as follows. If a line set consists

of such lines as l 1 , l 2 , l 3 , l 4 , the ellipse centre can be identified by

their line pairwise intersections belonging to the set. However, be-

cause of unavoidable distortions, the intersections are usually dis-

tributed in a small range around the exact centre. For getting a

better result, we use a set of 7 points, consisting of the two centres

C 12 , C 34 , their mean, and the other 4 intersections formed by a set

lines of l 1 , l 2 , l 3 , l 4 , as represented by black points in Fig. 8 , to es-

timate the ellipse centre. If the gradients of lines through the end-

points and midpoints of arcs contain errors in a noisy image, the

geometric centres are shifted into neighbourhood of real points, as

shown in Fig. 9 . We need to get the rigorous geometric centre and

thus, seven intersections should be coincident with each other. The

smaller the errors included in the gradients of points on an arc set

are, the closer seven intersections become. Then the rigorous el-

lipse centre can be confirmed by exploring high density spaces of

the intersections with a clustering algorithm. Conventional meth-

ods detect ellipse centres by obtaining the median of the coordi-

nates of a set of intersection points in [28,42] . Contrary to this, we

generate the rigorous centre C by using the mean-shift clustering

algorithm [54] upon the intersections formed by a line set. Specifi-

cally, the iterative mean-shift clustering is applied for detecting the

converged centre that lies in an acceptable area decided by ROI
Region of Interest) of the mean-shift algorithm, which improves

ts robustness to noise. 

.3. Parameter estimation 

We use the information { x i , y i , θ i } of pixel on an arc to estimate

he remaining parameters. Following the Eqs. (4 –8 ), we obtain an

xpression involving the two slopes defined by the line segment

ointing two points on the same arc and the line passing the inter-

ection and the midpoint of two points of an arc, as illustrated in

ig. 10 , as follows, 

 M 12 
= 

x 1 + x 2 
2 

, y M 12 
= 

y 1 + y 2 
2 

, (9)

 M a 
= 

y 2 − θ2 x 2 − y 1 + θ1 x 1 
θ1 − θ2 

, y M a 
= 

θ2 y 1 − θ1 y 2 + θ1 θ2 ( x 2 − x 1 ) 

θ1 − θ2 

, 

(10)

 1 = 

y 2 − y 1 
x 2 − x 1 

, (11)

 2 = 

y M a 
− y M 12 

x M a 
− x M 12 

= 

( θ1 + θ2 ) ( y 1 − y 2 ) + 2 θ1 θ2 ( x 2 − x 1 ) 

2 ( y 1 − y 2 ) − ( θ1 + θ2 ) ( x 2 − x 1 ) 
, (12)

To obtain the remaining parameters, we decompose the param-

ter space of an ellipse into two orthogonally projected ellipses,

s described in [12,28,55,56] . Based on the derivation of [55,56] ,

he following two parameters N, K are computed from the Hough

ransform as follows, 

 = 

B 

A 

(13)

 = tan ρ, (14)

here the orientation ρ represents the anti-clockwise rotation an-

le from an ellipse long axis, and N is the ratio of the ellipse short

emi-axes length B and long semi-axes length A . The equation that

xpresses N in terms of K is 

 

2 = − ( s 1 − K ) ( s 2 − K ) 

( 1 + s 1 K ) ( 1 + s 2 K ) 
, (15)
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here s 1 and s 2 are the slopes of the lines L 1 , L 2 , respectively.

hen calculating each centre of a pair of arcs consisting of an

llipse, we use the point pairs of arcs to calculate s 1 and s 2 by

q. (9) –(12) . If only a pair of endpoints is applied to calculating N

nd K , it cannot obtain the high accuracy. However, the Eq. (15) is

alid for any two points. We use two pairs of points that con-

ributes to detecting the centre to improve the accuracy of the val-

es N and K . Thus, the following equations are given as 

( s 1 − K ) ( s 2 − K ) 

( 1 + s 1 K ) ( 1 + s 2 K ) 
= − ( s 3 − K ) ( s 4 − K ) 

( 1 + s 3 K ) ( 1 + s 4 K ) 
. (16) 

here s 1 , s 2 are derived by the first pair of points on one arc and

 3 , s 4 are obtained from the other pair of points on the other arc.

fter a series of simple algebraic manipulation, we obtain the fol-

owing equation, 

K 

2 + βK − α = 0 (17) 

ith α = s 1 s 2 − s 3 s 4 and β = s 2 s 4 ( s 3 − s 1 ) + s 1 s 3 ( s 4 − s 2 ) +
( s 1 + s 2 − s 3 − s 4 ) . 

Thus, 

 = ±
√ 

1 − β

α
. (18) 

We continuously update the N - K accumulator that consists of

eighted voting values for each point pairs on arcs depending

n Eq. (15) –(16) . For two pairs of points, the values of N and ρ
re the highest peaks, which are the local maxima, in two one-

imensional accumulators. After the ellipse centre ( x c , y c ) and the

wo parameters ( N, K ) are estimated by the clustering algorithm

nd two one-dimensional accumulators respectively, we calculate

he two semi-axes A and B . Here, the polar equation of ellipse and

oordinate transformation are applied. The coordinate ( x i , y i ) of a

oint on an arc is transformed to the coordinate ( x o , y o ) in the el-

ipse coordinate system (the centre of the ellipse as the origin and

he semi-major axis as the horizontal axis) as, 

x o 
y o 

]
= 

[
cos ρ sin ρ

− sin ρ cos ρ

][
x i − x c 
y i − y c 

]
. (19) 

Based on Eq. (13) –(16) , we obtain the following equations, 

x o = 

( x i − x c ) + ( y i − y c ) K √ 

K 

2 + 1 

, 

 o = 

( y i − y c ) − ( x i − x c ) K √ 

K 

2 + 1 

. (20) 

Referring to [55] , we estimate A x as follows. 

 x = 

√ 

x 2 o N 

2 + y 2 o 

N 

2 
(
1 + K 

2 
) . (21) 

Finally, combining A x = A cos ρ and N = 

B 
A 

, we identify an el-

ipse candidate with a parameter set ( x c , y c , N, K, A ). 

. Validation and clustering 

.1. The validation of the candidate ellipse 

An arc set that satisfies the three constraints above still may

onsist of an invalid ellipse. Therefore, a scheme that filters false

etections by identification of invalid ellipses is incorporated in the

roposed method. 

.1.1. Confirmation by the ratio of the length 

We adopt the ratio of half of the circumference of the bounding

ox enclosing an arc and the sum of the semi-axes lengths to be a

easurement of an ellipse circumference. Assuming that an ellipse
andidate is fit by an arc pair τ = ( a 1 , a 2 ) enclosed by bounding

oxes with the size of m i × n i ( i = 1 , 2 ) , we define a function K(τ )

s follows 

 ( τ ) = 

∑ 2 
i =1 ( m i + n i ) 

2 ( A + B ) 
. (22) 

A higher value of K(τ ) implies that the arc pair has a larger in-

egrity for an ellipse candidate. If K(τ ) exceeds a threshold ( thre l ),

he ellipse candidate can be verified further by the below con-

traint, otherwise it is regarded as a false detection and is gave

p. The corresponding score s ( K(τ ) ) , which is equvalent to K(τ ) ,

s given to the candidate ellipse. 

.1.2. Confirmation via the ratio of the circumference 

Supposing that the coordinate of a pixel on an arc is ( x i , y i ), we

ut this coordinate into the follows equations, 

 = 

[ ( x i − x c ) cos ρ + ( y i − y c ) sin ρ] 
2 

A 

2 
, 

 = 

[ ( y i − y c ) cos ρ − ( x i − x c ) sin ρ] 
2 

B 

2 
(23) 

here x c and y c represent the coordinate of the ellipse centre and

donates the orientation angle of a detected ellipse. The differen-

ial distance d between a chosen elliptic arc and an arc of a real

llipse arc is provided as follows, 

 = | X + Y − 1 | . (24) 

If d is less than a threshold ( thre d ), it implies that the point ( x i ,

 i ) on an arc pair τ = ( a 1 , a 2 ) is close enough to the edge of the

llipse candidate. In this case, the point ( x i , y i ) can be put a set of

oints B . We define a function ψ( τ ) to represent the ratio of the

umber of elements in B to the total number of points on the two

rcs in the arc set τ used for detecting the ellipse, 

 ( τ ) = 

N B 
N a + N b 

(25) 

here N a and N b are the numbers of points on the two arcs, re-

pectively and N B is the number of points in B. The larger the ra-

io ψ( τ ) is, the better the ellipse-fitting is. If ψ( τ ) is more than a

hreshold ( thre ψ 

), the detected ellipse is considered as a valid one,

therwise this ellipse is discarded. When satisfying the constraint,

he ellipse candidate is given a score s ( ψ( τ )) whose value is the

atio ψ( τ ). 

.2. Ellipse clustering 

Through the verifications above, multiple arc sets may be fit to

he same ‘real ellipse’ as they may belong to the same ‘real ellipse’.

e adopt the clustering approach [57,58] to eliminate duplicated

llipses by the order of the total scores s ( K( τ ) ) + s ( ψ( τ ) ) [21] . We

rst allow the ellipse with the highest score to be the centre of a

iven cluster and then, we discard other ellipses that belong to this

luster. If an ellipse does not belong to any cluster, it becomes the

entre of a new cluster. 

. Geometric property for false detection control 

Since the intrinsic attribute of the ellipse is expressed by math-

matical model, a geometric feedback loop is developed by us to

ieve out false detections significantly. Here we use the following

eometric constraint to describe an elliptical geometric property:

f a point Q M 

is the midpoint of elliptic chord Q 1 Q 2 , the product

f the slope k Q 1 Q 2 of chord Q 1 Q 2 and the slope k O Q M of line seg-

ent formed by the origin O of ellipse and Q M 

is equal to the

onstant − B 2 

2 , as illustrated in Fig. 11 . This property remains valid

A 
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Fig. 11. Schematic of geometric property of ellipse. A and B represent the major 

and minor semi-axes lengths; Q 1 and Q 2 denote two points on an ellipse. O is the 

origin of ellipse. 
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for any form of linear coordinate transformation. For simplifica-

tion, we consider an ellipse with centre (0,0), and orientation an-

gle ρ = 0 . As Q 1 ( x 1 , y 1 ) and Q 2 ( x 2 , y 2 ) satisfy the ellipse equation
x 2 

A 2 
+ 

y 2 

B 2 
= 1 , we can obtain as, 

x 1 
2 

A 

2 
+ 

y 1 
2 

B 

2 
= 1 , 

x 2 
2 

A 

2 
+ 

y 2 
2 

B 

2 
= 1 . (26)

Then the difference between the two equations is provided as,

( x 1 − x 2 ) ( x 1 + x 2 ) 

A 

2 
+ 

( y 1 − y 2 ) ( y 1 + y 2 ) 

B 

2 
= 0 , (27)

Thus , k Q 1 Q 2 = 

y 1 − y 2 
x 1 − x 2 

= − B 

2 ( x 1 + x 2 ) 

A 

2 ( y 1 + y 2 ) 

= − B 

2 

A 

2 k O Q M 
with Q M 

(
x 1 + x 2 

2 

, 
y 1 + y 2 

2 

)
. (28)

Finally , k Q 1 Q 2 · k O Q M = − B 

2 

A 

2 
. (29)

Since the discrete character of digital image influences the pre-

cision of calculation, it is preferable to choose a suitable threshold

for the following inequality, ∣∣∣∣k Q 1 Q 2 · k O Q M + 

B 

2 

A 

2 

∣∣∣∣ < T hr e p . 

A chosen pair of points are from two different arcs consisting of

an ellipse. If the x or y values of the chosen points are the same, a

slope k O Q M or k Q 1 Q 2 is absent, respectively. We capture three pairs

of such points that rest on randomly for verifying a detection re-

sult depending on the constraint above. If these points satisfy the

geometric constraint, we accept the detection, otherwise discard it.

In fact, this procedure spends a small computational cost, there are

just a small number of ellipse candidates in each image after vali-

dation and clustering of ellipse. 

6. Experimental results and discussions 

We present various experimental results to verify the perfor-

mance and advantages of the proposed method. We use four

publicly available datasets, namely, Dataset of synthetic images

[20,21] supplemented by us, Dataset Prasad [21] , dataset #1 [28] ,

Dataset HX created by us. We perform a series of experiments

to evaluate the performances of ellipse detection approaches.

These datasets have different characteristics and are discussed

in subsection 6.1 . We compare the performance of our method

against six state-of-the-art ellipse detection methods, namely Jia

et al. [42] , Fornaciari et al. [28] , Prasad et al. [21] , Bai et al. [29] ,
iu et al. [33] , and Mai et al. [22] . Source codes of these meth-

ds in C ++ or MATLAB are available online. The execution time of

he programs in MATLAB is scaled down by 50 to make it compa-

able to a more computationally efficient implementation in C ++
28] . The performance metrics are presented in subsection 6.2 . All

he experiments are executed without code parallelization on a PC

ith 8GB RAM and an Intel Core i7 processor. The threshold pa-

ameters that determine the performance of the proposed ellipse

etection are explored in subsection 6.3 . The performance compar-

son with six state-of-the-art methods and the corresponding dis-

ussions are presented in subsection 6.4 . 

.1. Four public datasets 

.1.1. Dataset of synthetic images 

We first evaluate the performance of the proposed method us-

ng the dataset of synthetic images. Originally, there are 600 im-

ges with occluded ellipses and 600 images with overlapping el-

ipses of the size of 300 × 300 in synthetic dataset [20] . The τ ∈ {4,

, 12, 16, 20, 24} occluded or overlapping ellipses are distributed

andomly within the region of image. For each value of γ , we

ave 100 images with occluded ellipses and 100 other images with

verlapping ellipses. We create synthetic images with arcs that just

ie in two quadrants to make up dataset of synthetic images [20] .

pecifically, the size of such images is also 300 × 300. All the im-

ges with arcs resting on two quadrants can be divided into two

ategories such as images including arcs that lie in the first and

econd quadrants and images with arcs resting on the first and

hird quadrants. The τ ∈ {2, 4, 6} arcs consisting of ellipses scat-

er randomly within the region of image. 50 images with arcs in

rst and second quadrants and 50 other images with arcs in first

nd third quadrants are created for every τ . 

.1.2. Dataset Prasad 

The ellipses are detected in the images of Dataset Prasad [21] to

emonstrate the performance of the presented method in real sce-

arios. The dataset is composed of 198 images that are randomly

hosen from 48 categories in Caltech256 dataset [59] and still

vailable online. In Dataset Prasad, the number of small ellipses

i.e. with semi-major axis length shorter than 20 pixels) is high

ompared to Dataset #1. Moreover, in Dataset Prasad the number

f ellipses in each image is more uniform across the images than

n Dataset #1. 

.1.3. Dataset #1 

Dataset#1 consists of 400 real images with elliptic shapes,

hich are collected from MIRFlickr and LabelMe repositories [28] .

ataset #1 contain fewer ellipses than Dataset Prasad. The im-

ges in Dataset #1 are classified into two main categories, such as

he high-definition image with a single object and lower-resolution

mages containing many objects with more complex scenes than

ataset Prasad. 

.1.4. Dataset HX 

We construct a new dataset named Dataset HX, which allows

valuation of the proposed method for application to real indus-

rial scenarios. For instance, a robot can manipulate an object by a

eal-time ellipse detection. We randomly collect 300 images with

lliptic shapes from 16 categories in ImageNet repository [60] to

orm the Dataset HX. We generate the ground truth for each im-

ge using the annotation tool presented in [21] . All the images are

rom real scenarios like households, industries, and roads. For each

cenario, we choose 100 images for building Dataset HX. The im-

ges in industrial scenarios are taken in dim light conditions and

re degraded due to partial occlusions and illumination variations.

n household and road environments, the quality of the images is
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oor because of spectral reflections. In industrial images, the pres-

nce of reflective and dense pits on surfaces of mechanical parts

orrupt the elliptic contours seriously, which makes the elliptic

dge contours appear as non-elliptic and splits the continuous el-

iptic curve into short edge contours. Thus, there exist more chal-

enges for detecting ellipses in images of Dataset HX than Dataset

rasad and Dataset #1. 

.2. Evaluation metrics 

We evaluate the performance of the presented method in terms

f the detection effectiveness and execution time. The detection ef-

ectiveness of the algorithm is assessed according to the approach

roposed in [61] . Specifically, we determine the correctness of a

etected ellipse E d based on the following overlap ratio between

he detected and the ground-truth ellipses, 

 ov erlap = 

ar ea ( E d ) ∩ ar ea ( E g ) 

ar ea ( E d ) ∪ ar ea ( E g ) 
(30) 

here area ( E i ) denotes the cardinality of the set of pixels within

llipse E i ; E d and E g are a valid detection and a ground-truth el-

ipse, respectively. An ellipse is considered detected if the overlap

atio is more than 0.95 for synthetic images and 0.8 [28,30] for

eal images in Dataset Prasad, Dataset #1 and Dataset HX. A com-

on index F - measure can evaluate the detection effectiveness. F -

easure combines the precision and the recall of the detector,

hich are defined as follows, 

 recision = 

Number of correctly det ect ed el l ipses 

T otal number o f el l ipses det ect ed 
(31) 

ecall = 

Number of correctly detected el l ipses 

T otal number of el l ipses present in test images 
(32) 

 − measure = 

2 × P recision × Recall 

P recision + Recall 
. (33) 

Besides the effectiveness, we also use an average execution

ime t ( ms /image) to assess the execution speed of the presented

ethod in the four datasets. 

.3. Parameter tuning and sensitivity analysis 

The performance of ellipse detection method depends on

he choice of threshold parameters, including thre r , thre a ,

hre θ , thre center ,thre l , thre d , and thre ψ 

, thre p . However, we cannot en-

ure suitability of a chosen set of values for the threshold param-

ters in all images for achieving the best performance of ellipse

etection. On the other hand, it is quite difficult to build an accu-

ate mathematical model of the multi-objective optimization prob-

em of identifying suitable values of control parameters for each

mage. Thus, we use the statistical data of F - measure and the ex-

itation time ( t ) obtained by tuning one threshold parameter at a

ime while fixing other threshold parameters. 

During the pre-processing, the straight curves and short curves

re removed through the threshold parameters thre r and thre a , re-

pectively. The influences of the threshold thre r and thre a on the

ffectiveness and execution time are explored in Fig. 12 (A). Regard-

ng thre r , it is quite unambiguous that the detection effectiveness

oes not show significant changes for thre r ≥ 10, while the execu-

ion time increases monotonically. Thus, we choose 10 as the value

f thre r . Regarding thre a , it is observed that although the execution

ime decreases monotonically with increasing values of thre a , the

-measure decreases for thre a > 8. Thus, we adopt thr e a = 8 . The

hreshold thre θ is used for arc extraction and its impact on the

llipse detection performance is studied in Fig. 12 (B). The execu-

ion time monotonically decreases with increasing values of thre θ .

n the other hand, the best value of F-measure is obtained in the
ange 30 ≤ thre θ ≤ 40 across all the datasets of real images. As a

esult, we set thr e θ = 35 o . The threshold thre center is used for the

eometric constraint pertaining selections of arc pairs based on

he proximity of the estimated centres of ellipses. Impact of its

alue on the performance of the proposed methods is investigated

n Fig. 12 (C). The execution time increases monotonically with in-

rease in the value of thre center . However, the F-measure reaches

he best values for 25 ≤ thre center ≤ 30. In Fig. 12 (D), we choose

hr e center = 25 as a good trade-off to gain a good effectiveness and

eep an execution time at the minimum. 

The threshold thre l is applied to the ratio of the semi-axis

engths to the side lengths of bounding box for reducing false pos-

tive detections. As illustrated in Fig. 13 (A), the execution time de-

reases monotonically with increasing values of thre l . However, the

-measure decreases very fast for values of thre l larger than 0.6.

his implies a more strict selection of valid ellipses, which re-

ults in poorer recall. The peak F-measure is achieved in the range

.4 ≤ thre l ≤ 0.5. We set thr e l = 0 . 5 in favour of a balance between

-measure and execution time. The threshold thre d on the distance

etween a pixel on a detection arc and corresponding pixel on a

eal arc of ellipse is another parameter used of suppressing false

ositive detections. Fig. 13 (B) illustrates that F-measure, peaking

n the range 0.6 ≤ thre d ≤ 1.0, but monotonically increasing execu-

ion times. Thus, we choose thr e d = 0 . 8 . Threshold thre ψ 

pertains

he reduction of false positives through the ratio of the circumfer-

nce. Results for thre ψ 

are shown in Fig. 13 (C). The execution time

ecreases monotonically with thre ψ 

while the F-measure dramat-

cally decreases when the threshold thre ψ 

is greater than 0.3 be-

ause of the reduction in recall. Thus, we choose thr e ψ 

= 0 . 3 . As

he fluctuation of execution times is relatively stable, we choose

hr e p = 10 to realize the best detection performance, as illustrated

n Fig. 13 (D). 

.4. Performance comparisons 

.4.1. Experiments on synthetic images 

We first test the performance of the proposed ellipse detection

ethod in synthetic images in which each image contains γ oc-

luded or overlapping ellipses, 4 ≤γ ≤ 24. γ represents the number

f occluded or overlapping in an image. The synthetic images with

rcs resting on two quadrants that consist of τ ∈ {2, 4, 6} ellipses

re also explored to evaluate the performance of the presented de-

ector. 

As illustrated in Fig. 14 (A), the F-measure of the proposed

pproach exceeds five reference methods and is comparable to

rasad’s method. For images with between four to twelve oc-

luded ellipses, the F-measure is more than 0.90. As γ increases

o twenty-four, F - measure still maintains a relatively high value for

he presented approach. The reference methods of Jia, Fornaciari

nd Mai shows a deteriorating F-measure with increasing num-

er of occluded in an image. Specifically, at γ = 24 , the presented

ethod can obtain F-measure of approximately 0.8, a significantly

etter value than the methods of Jia (0.45), Fornaciari (0.50), and

ai (0.05). Even though the F-measure of Bai’s method does not

eteriorate significantly with increasing γ , it performs poorer as a

hole compared with the proposed method, with the exception of

= 24 . Liu’s method is ineffective for detecting occluded ellipses

ecause there is no scheme for dealing with the inflexion points

n Liu’s method. We show examples of the synthetic test images in

ig. 15 . 

We further assess the robustness of the proposed method by

etecting overlapping ellipses. It is evident that the proposed

ethod significantly outperforms the reference methods except for

rasad’s method in terms of F-measure, as shown in Fig. 14 (B). As

or images containing less than 20 overlapping ellipses, our ap-

roach achieves F-measure of more than 0.9. The detection effec-
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Fig. 12. F - measure (1) and execution time t values (2) for thre r (A), thre a (B), thre θ (C), thre center (D). 

Fig. 13. F - measure (1) and execution time t (2) for thre l (A), thre d (B), thre ψ (C), thre p (D). 
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tiveness of the proposed method and Prasad’s method are rela-

tively stable, deteriorating only slightly with increasing γ . The per-

formances of Jia’s, Fornaciari’s and Mai’s methods show deteriora-

tion in detecting overlapping ellipses with increasing γ . The sig-

nificant difference in performance is apparent for = 24 , for exam-

ple, we obtain F-measure of approximately 0.87, whereas the F-

measures of Jia, Fornaciari, and Mai are approximately 0.56, 0.53,
nd 0.39, respectively. We note that the performances of Bai’s and

iu’s methods improve slightly as the number of overlapping el-

ipse increases. The specific cases of detecting overlapping ellipses

re shown in Fig. 16 . 

Detection of multiple fragmentary ellipses that are made up

f arcs in two quadrants is a very challenging task. We simulate

his situation by considering ellipses with arcs spanning only two
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Fig. 14. F - measure for images with γ occluded ellipses (A) or overlapping ellipses (B), 4 ≤γ ≤ 24. 

Fig. 15. The practical cases of detecting γ occluded ellipses in synthetic images, 4 ≤γ ≤ 24. 



124 H. Dong et al. / Pattern Recognition 81 (2018) 112–130 

Fig. 16. The practical cases of detecting γ overlapping ellipses in synthetic images, 4 ≤γ ≤ 24. 

Table 2 

The detection results for Dataset of synthetic images (arcs resting on two quadrants). 

Dataset of synthetic images (arcs resting on two quadrants) 

Mai 2008 Liu 2009 Bai 2009 Prasad 2012 Fornaciari 2014 Jia 2017 Ours 

Precision 0.0 0 0 0 0.0400 0.4503 0.5237 0.0 0 0 0 0.0 0 0 0 0.7820 

Recall 0.0 0 0 0 0.0119 0.6056 0.8228 0.0 0 0 0 0.0 0 0 0 0.9064 

F-measure 0.0 0 0 0 0.0184 0.5165 0.6400 0.0 0 0 0 0.0 0 0 0 0.8396 
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quadrants. In order to make the problem even more challenging,

we consider presence of multiple such ellipses (2 ellipses, 4 el-

lipses, or 6 ellipses), see Fig. 17 . As illustrated in Table 2 , the pro-

posed method shows the best performances in the detection effec-

tiveness against other six methods on such images. Obviously, For-

naciari’s and Jia’s detectors depend on three arcs that must lie in

three different quadrants respectively. So, they cannot detect such

ellipses. Compared to the results of Bai’s and Prasad’s methods,

the proposed method significantly improves algorithm efficiency

by the means of geometric properties. Mai’s and Liu’s detectors fail

to work when the elliptical arc is broken and fragmented. The de-

tection examples of the presented detector are shown in Fig. 17 .

As the execution time taken is quite small for Dataset of synthetic

images [21] , we do not present the comparison of execution times

for this dataset. 

6.4.2. Experiments on real-world images 

For comparing the performances in Dataset Prasad, the compar-

ison results in terms of F - measure and average execution times are
eported in Table 3 . For Dataset Prasad, the method proposed by

rasad et al. [21] performs the best in terms of F-measure but re-

orts quite high execution time. The presented method is in the

econd place, very close to Prasad’s method in terms of F - measure ,

owever requiring significantly smaller execution time. Jia and

ornaciari’s methods reveal poorer performances since their algo-

ithms are not suitable for detecting small ellipses and occluded

llipses in two quadrants, which are numerous in Dataset Prasad.

hey have smaller execution times as compared to our method,

owever at the cost of reduction in F-measure. Liu’s method per-

orms the worst ( F - measure < 0.1) because the selection strategy

ased on random points is ineffective in the presence of noise

n real images. The methods of Bai et al. and Mai et al. result

nto similar F-measures with values 0.2395 and 0.1831, respec-

ively. Liu’s, Bai’s, and Prasad’s method perform poorer than ours

n terms of execution times, and that our method can support de-

ection rates of up to 60 Hz due to mean execution time of ∼16 ms.

ased on the trade-off consideration, our method is superior to



H. Dong et al. / Pattern Recognition 81 (2018) 112–130 125 

Fig. 17. The example cases of detecting τ ∈ {2, 4, 6} partial two quadrant ellipses in synthetic images. 

Table 3 

The detection results for Dataset Prasad, Dataset #1 and Dataset HX. 

Dataset Prasad Dataset #1 Dataset HX 

F-measure Time(ms) Precision Recall F-measure Time(ms) Precision Recall F-measure Time(ms) Precision Recall 

Mai 2008 0.2535 962.2 0.4135 0.2269 0.2604 1979.5 0.3299 0.2463 0.2573 597.8 0.3109 0.2431 

Liu 2009 0.0950 0.0950 1049 0.07 0.1505 0.1170 3960 0.1248 0.1415 0.0534 1560 0.0653 0.0575 

Bai 2009 0.2395 3470 0.2195 0.2890 0.2121 136,085 0.2420 0.1909 0.1028 4140 0.0830 0.2181 

Prasad 2012 0.7428 8300 0.8512 0.6813 0.4512 17,130 0.4425 0.4610 0.3910 3260 0.3364 0.4669 

Fornaciari 2014 0.3661 12.61 0.8541 0.2330 0.5716 16.55 0.7117 0.4777 0.3472 19.35 0.8825 0.2161 

Jia 2017 0.4332 8.42 0.7390 0.3064 0.5733 12.61 0.6161 0.5361 0.4032 15.69 0.8165 0.2677 

Ours 0.6278 16.72 0.8763 0.4891 0.6861 24.82 0.8635 0.5691 0.4756 22.14 0.8965 0.3237 

Table 4 

The average execution time of datasets of real images and average F-measure for datasets of real images and synthetic images. 

Mai 2008 Liu 2009 Bai 2009 Prasad 2012 Fornaciari 2014 Jia 2017 Ours 

Average time (ms) for datasets of real images 1179.8 2189.7 47,898.3 9563.3 16.17 12.24 21.23 

Average F-measure for datasets of real images 0.2535 0.0885 0.1848 0.5283 0.4282 0.4699 0.5964 

Average F-measure for dataset of synthetic images 0.2578 0.0274 0.6735 0.8333 0.4 4 41 0.4579 0.8832 
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ther methods in the detection performance. The detection results

re illustrated for several examples in Fig. 18 . 

Now, we compare the performances for Dataset #1. The aver-

ge results of the performance metrics, including the average F-

easure and the average execution time, are listed in Table 4 .

ur method not only outperforms the other methods in terms of

he F-measure, but also illustrates an acceptable level on the ex-

cution time for practical applications. At average execution time

f ∼24 ms, it can support detection rates of approximately 40 Hz.

rasad’s method is very demanding in terms of execution times

nd but does not reach the F-measure to the same levels as in syn-
hetic scenarios or their own dataset. Fornaciari’s and Jia’s methods

emonstrate excellent execution speeds but fail to detect several

mall ellipses and do not reach the F-measure of our method. Liu’s,

ai’s and Mai’s methods provide low F-measures even though they

ake small execution time. Examples of ellipses detected by all the

ethods for images from Dataset#1 are shown in Fig. 19 . 

Table 4 also shows the performance results for the more chal-

enging and practical Dataset HX. Examples of detected ellipses are

llustrated in Fig. 20 . As observed in Fig. 20 , our method can be

bility to detect most of ellipses in images while most reference

ethods may be ineffective for detecting such ellipses. The pre-



126 H. Dong et al. / Pattern Recognition 81 (2018) 112–130 

Fig. 18. The detection results of the real images in Dataset Prasad. 
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sented method not only outweighs the other methods in terms of

F-measure, but also has practically small execution time. At aver-

age execution time of 22.14 ms, it can support detection rate of ap-

proximately 45 Hz. In contrast, Prasad’s method obtains F-measure

of 0.391, but suffers for images with industrial backgrounds in

terms of the execution time. Though the time consumed by the

methods of Jia and Fornaciari is little, they are clearly inferior

to the proposed method in terms of detection effectiveness. Liu’s,

Bai’s, and Mai’s methods provide impractically small F-measures,

especially missing overlapping or occluded ellipses in images with

complex backgrounds. 
b  

s  

t  
.5. Discussions 

Statistical results regarding the average F-measure and average

xecution times for datasets are shown in Table 4 , respectively.

s seen in Table 4 , the presented method is in the first place in

erms of the average F-measure for all four datasets. Further, the

ow average values of execution time indicate that our detector

an be applied to practical scenarios in real time. We mention

hat the poorest detection rate for our method is approximately

0 Hz, which easily supports video rate ellipse detection. Thus, it

an be concluded that our algorithm realizes an excellent balance

etween the detection effectiveness and the execution time. In this

ection, we focus on the methods of Prasad, Fornaciari and Jia as

hey have relatively better performances than Bai’s, Liu’s and Mai’s
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Fig. 19. The detection results of the real images in Dataset #1. 
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ethods. Prasad’s detector has an apparent disadvantage in the ex-

cution time since its clustering procedure is very time consum-

ng. For arc grouping, they explore matching all arcs within the

earch region of an arc to form a set of arcs that potentially be-

ong to the same ellipse. In this sense, it takes an exhaustive ap-

roach, which results in high computational costs and limited ap-

licability for real time or video rate ellipse detections. The ap-

roach of Fornaciari’s and Jia’s methods to classify arcs into quad-

ants by the arc convexity-concavity based on sizes of areas is not

uitable for small arcs. This results for poor performance of these

ethods in detecting overlapping or occluded ellipses. Moreover,

hough the selection strategies of Fornaciari’s and Jia’s methods,

imilar to ours, significantly speed up the grouping procedure, they

mpose the condition that a set of arcs selected for fitting an el-
ipse must rest on at least three different quadrants. Consequently,

ighly occluded ellipses, such as semi-ellipses, cannot be detected

y these methods. Further, Fornaciari’s and Jia’s methods use par-

llel chords to estimate ellipse’s centres. However, as mentioned in

ubsection 3.2 , this approach of centre estimation is inaccurate for

hort arcs, subsequently decreasing the detection effectiveness of

verlapping or occluded ellipses. In general, our method aims for

vercomes the disadvantages of Prasad’s and Fornaciari’s methods

y employing superior strategies of arc extraction and arc group-

ng. 



128 H. Dong et al. / Pattern Recognition 81 (2018) 112–130 

Fig. 20. The detection results of the real images in Dataset HX. 
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7. Conclusion and future works 

In this paper, we propose a geometric approach based on gradi-

ent analysis to detecting ellipses in practical scenarios with a high

detection effectiveness and low execution time. The balance of low

execution time and detection effectiveness is obtained through (a)

effective combination of rejecting curves that do not contribute to

ellipse detection, (b) smart grouping of arcs potentially suitable for

detecting ellipses, and (c) utilizing pre-computed gradient informa-

tion powerfully at multiple steps to alleviate computation needs of

the conventional approaches that do not exploit gradients directly.

Experimental results demonstrate that the proposed method per-

forms better than six state-of-the art methods in terms of overall

performance. Further, it can be used in practical scenarios such as
ndustrial fields and automatic unmanned drive. Furthermore, we

an achieve this performance at video rates, with average detec-

ion rates of 40 images per second or better. 

Future works will update this algorithm to detect even more

eavily occluded ellipses, which allows a robot to sort multiple cir-

le and elliptic mechanical components in cluttered environments

y ellipse detection in real time. 
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