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Abstract—Robotic manipulation of objects requires a fast 

recognition from image stream. For many cylindrical object (e.g. 

cans, cups, pipes, bottles, etc.) this is possible through detection of 

ellipse depicting the circular top of the cylinder. Growing 

industrial and warehouse applications of robots drive the 

demand for fast and reliable detection of ellipses, while state-of-

the-art methods are lacking in either speed or accuracy strength. 

We present a novel algorithm to perform fast and robust ellipse 

detection. First, the method utilizes the information of edge 

curvature to split curves into arcs. Next, the arc convexity-

concavity is used to classify arcs into different quadrants of 

ellipses. Then based on multiple geometric constraints the arcs 

can be grouped at low computational cost. Our method is 

compared with six state-of-the-art methods using three public 

image datasets. The comparison results show that the proposed 

algorithm outperforms other methods with high detection 

accuracy and fast detection speed. Lastly, the algorithm is 

applied to identifying cylindrical objects in real-time for 

arranging and tracking purposes. 

 
Index Terms—Grasping, Perception for Grasping and 

Manipulation, RGB-D Perception, Elliptic tracking, Gradient 

information. 

 

I. INTRODUCTION 

OBOTS are used for grasping objects in the everyday life 

[1, 2] via the perception system. Cylindrical objects are 

common man-made geometric volumes. Thus, perceiving 

ellipses (circles from different views) is needed for a robot. 

Ellipse detection has been applied in robotics to obtain the 

coordinates of cylindrical objects for object picking [3-6] and 

manipulation, as shown in Fig. 1. While the possibility of 

detecting cylindrical objects through ellipse detection in 
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images is obvious, it is important to detect ellipses accurately 

and fast for this purpose. Further, although the problem of 

detecting ellipses seems simple and obvious, in practice, it is 

challenging to perform ellipse detection in real complex 

scenes under severe time constraints. In real scenes, there may 

be multiple elliptical objects, and other objects can partially 

occlude these elliptical objects.  

Hough Transform (HT) and its variants [7, 8] were initially 

used for detecting shapes including ellipses by planar sets of 

points. However, the voting process of variants of HT makes 

them prohibitively slow. Some fast ways are possible by 

decomposition of parameter space, i.e., using methods for 

estimating some parameters (often the center coordinates) of 

ellipses and using HT for the remaining parameters only. The 

previously mentioned papers on robotics applications [1, 6] 

use direct fitting techniques to obtain the ellipse position, 

however with high computational costs and slow execution.  

Liu et al. [3] use a Quasi-Random Sample Consensus ellipse 

detection algorithm to recognize the cylindrical objects. 

However, this method is just effective for ellipses with a 

simple background. In fact, in robotic applications, the most 

likely condition is that many cylindrical objects of the same 

shape are stacked randomly in a container or a bin. In such 

scenario, a target occluded by other mechanical parts is not 

recognized. 

The computational cost associated with ellipse detection can 

be reduced by using a selected subset of curves for ellipse 

fitting, irrespective of whether HT or other methods are used 

for determining ellipse parameters. Thus, arc selection is the 

most common approach used by modern ellipse detection 

methods. Arc selection is often performed through geometric 

criteria satisfied by ellipses’ boundaries. For example, in 

several ellipse detection methods [9-14], short straight lines 

are detected to approximate arc segments, and these arcs 

segments are accumulated and merged into ellipses. Some 
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Fig. 1.  Robotic manipulation (picking and stacking) of multiple cans 

through deploying ellipse detection in a real-time scenario. 
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works [13, 15-17] have attempted to improve the detection 

accuracy with iterative approaches. Fornaciari et al. [18], Bai 

et al. [19] and Jia et al. [20] include the property of elliptical 

concavity to group arcs for detecting ellipses. However, the 

aforementioned methods are incapable of detecting ellipses 

accurately in real-time scenarios with complex backgrounds.  

In this paper, we present a novel algorithm to perform fast 

and accurate ellipse detection. The algorithm is suitable for 

processing real-time real-scenario imagery in robotic 

applications and real-world images with complex background. 

The algorithm involves three steps. First, the arcs that may 

consist of elliptic candidates are segmented based on the 

change of arc curvatures. Subsequently, the arcs are classified 

according to the pixel gradient and the arc convexity-

concavity. Finally, further geometric approaches with low 

computational costs are applied to validating the detected 

ellipses. Two experiments are conducted as well to assess the 

method performance in robotic manipulation. 

The layout of the paper is as follows. Arc segmentation and 

classification are discussed in Section II. Detection and 

validation of ellipses are explored in Section III. Section IV 

presents the threshold determination and performance 

comparisons. Experiments of robotic manipulations are 

described in Section V. The paper is concluded in Section VI. 

II. ARC SEGMENTATION AND CLASSIFICATION 

A. Pre-processing Stage  

    Canny edge detector with auto-thresholding is applied to 

obtaining the edge image from an input image, as shown in 

Fig. 2(B). The coordinates and gradient at an edge pixel  𝑝𝑖  are 

expressed as {𝑥𝑖 , 𝑦𝑖 ,  𝜂𝑖}, respectively. Since 𝜂𝑖 cannot be 

calculated accurately in digital images, we use only the 

orientation of the gradient, denoted by its sign, rather than the 

actual value of 𝜂𝑖. The gradient sign function Χ(𝑝𝑖) at the 

pixel 𝑝𝑖   is defined as follows, 

Χ(𝑝𝑖) = {
+, 𝑖𝑓 𝑡𝑎𝑛(𝜂𝑖) > 0 

 −, 𝑖𝑓 𝑡𝑎𝑛(𝜂𝑖) < 0  
.                        (1) 

   The edge pixels corresponding to horizontal and vertical 

gradients, whose gradient signs are undefined, are discarded. 

We define 𝒬(𝑒𝑘) as the direction of the arc that lies in a 

quadrant. Consequently, the arcs of the positive gradient 

direction rest on the first or third quadrants (𝒬(𝑒𝑘) ∈ {I ∪ III}) 
while the arcs of the negative gradient direction belong to the 

second or fourth quadrants (𝒬(𝑒𝑘) ∈ {II ∪ IV }) as illustrated 

in Fig. 2(C, D). I, II, III and IV represent the number of four 

quadrants. We note here that this property shall be used in the 

section II(C) again for arc classification. 

B. Arc Segmentation Process 

   Since the curvature change over an elliptic arc is smooth, 

we obtain smooth arcs by splitting at critical pixels including 

turning corners and inflexion points, as described below. A 

turning corner is a point where there is a large change of 

curvature, and an inflexion point is a point where the direction 

of curvature changes, as shown in Fig. 3. An edge curve 𝑐 is 

fitted by a series of the line segments {𝑙1, 𝑙2, … , 𝑙𝑁} by using 

RDP algorithm [21] with a tolerance threshold 𝑇𝑡 so that the 

curve 𝑐 are denoted as 𝑐: {𝑙1, 𝑙2, … , 𝑙𝑁}.  Approximation of a 

curve by line segments reduces the computational cost since 

the subsequent calculation is performed on the endpoints of 

the line segments only instead of all the pixels. The vector 

angles between the pairs of the consecutive line segments 

from 𝑙𝑖 to 𝑙𝑖+1 are defined as {𝜃1, 𝜃2, … , 𝜃𝑁−1}, which lie in the 

range of −𝜋 and 𝜋.  We set a threshold (𝑇𝜃) to evaluate the 

amount of the change between the first angle 𝜃1 and the ith  

angle 𝜃𝑖 (Fig. 3). Thus, the critical pixels are determined via 

the following constraint,  

|𝜃1 − 𝜃𝑖|  > 𝑇𝜃 . 

 Big difference between 𝜃1 and 𝜃𝑖  when the first angle 𝜃1 

and the ith   angle 𝜃𝑖 have the same signs implies that the pixels 

are turning corners. The change of the sign of  𝜃𝑖 relative to 𝜃1 

indicates the change of the direction of the curvature. In this 

case, such points 𝑃𝑖  are the inflexion points. The arc 

segmentation algorithm, via determining the turning corners 

 
Fig. 2.  The initial image(A); The edge image(B); Curves resting on 

the first or third quadrants (C) and the second or fourth quadrants(D). 
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Fig. 3.  The curves with the large change of curvature (A) and the change 

of direction of curvature (B). Specifically, 𝑙𝑖 represents the line segment 

fitting a curve(𝑖 = 1,2,3,⋯ ).  𝜃𝑖 denotes the intersection angle between 

the line segment 𝑙𝑖 and 𝑙𝑖+1. 𝑝𝑖 is a turning corner(A) or an inflexion 

point (B). 

Algorithm I.  The Arc Segmentation Algorithm 

  Arc segmented at turning corners and inflexion points 

     Input: 𝑇𝜃 , curves: 𝐴  

     Output: the arc vector: 𝐶  

For 𝑖 = 1 to the size of 𝐴 (i.e. number of curves), do 

      Fit the 𝑖th curve (𝐴 [𝑖]) by line segments, store in 𝐿;  
      Calculate angles 𝜃 formed by consecutive line segments in 𝐿; 

      For 𝑗 = 1 to the number of line segments in 𝐿, do 

             If (abs(𝜃1-𝜃𝑗) > 𝑇𝜃) 

                   For 𝑚 = 1 to the length of 𝐴 [𝑖] (i.e. size of the 𝑖th  
curve)  do    

                       If (𝐿[𝑗]. 𝑥==𝐴[𝑖][𝑚]. 𝑥 𝐴𝑁𝐷 𝐿[𝑗]. 𝑦==𝐴 [𝑖][𝑚]. 𝑦) 

                                Reserve 𝐴 [𝑖][𝑚] in 𝐵;                

       For 𝑘 = 1 to the size of 𝐵 do 

Create a new empty array 𝐶[𝑘], corresponding to a  

new arc 

                  For 𝑛 = 𝐵[𝑘 − 1] to 𝐵[𝑘] do 

                          Reserve  𝐴 [𝑖][𝑛] in  𝐶[𝑘].                 

Note: 𝐵 contains the critical points, i.e. the points at which the curve 𝐴 

[𝑖] should be split into arcs.  
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and inflexion points, is provided in Algorithm I. Notes that 

curves 𝐴 represents a set of the curves that are chosen after 

the pre-processing stage, point vector 𝐵 stores critical points 

(turning corners and inflexion points), and the output arc 

vector  𝐶 reserves the arcs from the broken curves that are 

broken at the critical points. 

  Next, we use an oriented bounding box (OBB) to enclose a 

smooth arc derived as above. If the ratio of the long side to 

the short side of OBB is bigger than a threshold (𝑇𝑜), the 

curvature of the arc is considered as a line segment to be 

discarded. The remaining curves are deemed as smooth arcs 

that may represent ellipses and used in the subsequent steps. 

C. Arc Classification  

Each smooth arc is further classified into two classes based 

on the convexity-concavity, as we define below. If the 

midpoint position of the arc is higher than the midpoint 

position of a line segment formed by the endpoints of an arc, 

the arc is convex, otherwise it is assigned to a concave arc, as 

shown in Fig. 4. The convexity-concavity of the arc 𝑒 is 

represented by the function Ω(𝑒) as follows 

                     Ω(𝑒) = {
+, 𝑐𝑜𝑛𝑣𝑒𝑥;      
   −, 𝑐𝑜𝑛𝑐𝑎𝑣𝑒.       

                    (2) 

When the positions of the midpoints 𝐺 and 𝑄 are the same 

as each other, the arc 𝑒 cannot be considered as a convex or 

concave arc, thus is rejected. 

   Based on the functions Χ(𝑃) and Ω(𝑒), each arc 𝑒 can be 

classified to the specific quadrant as follows, 

Ψ = {

I       〈Χ(𝑃), Ω(𝑒)〉 = 〈+,+〉

II      〈Χ(𝑃), Ω(𝑒)〉 = 〈−,+〉

III     〈Χ(𝑃), Ω(𝑒)〉 = 〈−,−〉

IV     〈Χ(𝑃), Ω(𝑒)〉 = 〈+,−〉

                  (3)  

where Ψ represents the quadrants where arcs rest. For 

example, consider an arc that belongs to I ∪ III  according to 

the property of Χ(𝑃)and 𝑃 represents the set of pixels(e.t.,𝑝𝑖), 
it can be classed to the first quadrant (I) if Ω(𝑒) is positive 

otherwise (Ω(𝑒) < 0) falls in the third quadrant (III). Thus, 

all the arcs are classed to the four quadrants depending on 

Eq.(3) (see Fig. 5). The quadrant assigned after this 

classification simply means that if an arc would belong to an 

ellipse, it would lie in the quadrant as identified above.  

D. Arc Grouping Based on Geometric Constraints 

   After classing arcs, we choose a triplet of arcs from the four 

different quadrants to consider if the triplet can constitute an 

ellipse. There are four combinations for a triplet of arcs lying 

in the four quadrants,(𝑒𝑎 , 𝑒𝑏 , 𝑒𝑐) in (I, II, III )or (I, II, IV ) or 

(II, III, IV) or(I, III, IV), where 𝑎, 𝑏, 𝑐 are the indexes of 

different arcs, as shown in Fig. 5. A triplet 𝜏𝑎𝑏𝑐 = (𝑒𝑎 , 𝑒𝑏 , 𝑒𝑐) 
is considered eligible for ellipse detection if it satisfies the 

below grouping constraints, which indicate that the arcs may 

belong to the same ellipse.  

    First, we use the grouping approach based on the relative 

positions among arcs [20]. With reference to Fig. 5, the 

following equation is used to describe the constraint on 

relative positions between two eligible arcs as follows, 

{
 
 

 
 𝑒𝑎

𝑙 (𝑥) > 𝑒𝑏
𝑟(𝑥), 𝑒𝑏

𝑙 (𝑦) > 𝑒𝑐
𝑟(𝑦), 𝑖𝑓 (𝑒𝑎 , 𝑒𝑏 , 𝑒𝑐)in (I, II, III );

𝑒𝑎
𝑙 (𝑥) > 𝑒𝑏

𝑟(𝑥), 𝑒𝑎
𝑟(𝑦) > 𝑒𝑐

𝑟(𝑦), 𝑖𝑓 (𝑒𝑎, 𝑒𝑏 , 𝑒𝑐)in (I, II, III );

𝑒𝑎
𝑟(𝑦) > 𝑒𝑐

𝑟(𝑦), 𝑒𝑐
𝑙(𝑥) > 𝑒𝑏

𝑟(𝑥), 𝑖𝑓 (𝑒𝑎, 𝑒𝑏 , 𝑒𝑐)in (I, II, III );

𝑒𝑎
𝑙 (𝑦) > 𝑒𝑏

𝑙 (𝑦), 𝑒𝑐
𝑙(𝑥) > 𝑒𝑏

𝑟(𝑥), 𝑖𝑓 (𝑒𝑎, 𝑒𝑏 , 𝑒𝑐)in (I, II, III ),

 

(4) 

where 𝑒𝑖
𝑙(𝑥) and 𝑒𝑖

𝑙(𝑦) represent the 𝑥-coordinate and 𝑦-

coordinate of the left endpoint of an arc 𝑒𝑖; 𝑒𝑖
𝑟(𝑥)  and 𝑒𝑖

𝑟(𝑦) 
indicate the  𝑥-coordinate and 𝑦-coordinate of the right 

endpoint of an arc 𝑒𝑖; 𝑖 represents 𝑎, 𝑏,or 𝑐. As shown in Fig. 

5(A), along the horizontal axis, the 𝑥-coordinate of  𝑒𝑎
𝑙  must 

be bigger than that of 𝑒𝑏
𝑟. Similarly, along the vertical axis,

𝒆 

𝑸 
 

𝑮 

𝑸 
 𝑮 

𝒆 

A B  
Fig. 4. A convex arc (B-top) and a concave arc (B-bottom).𝑄 represents the 

midpoint of the line segment formed by two endpoints of the red arc 𝑒 and 

𝐺 denotes the midpoint of the red arc 𝑒. The blue frame represents the 

bounding box.  
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Fig. 5. The four configurations for a triple of arcs. Arcs with different 

colors are classed into the four quadrants. 𝑒𝑖
𝑙 and 𝑒𝑖

𝑟 indicates the left and 

right endpoints of an arc and 𝑖 represents 𝑎, 𝑏,or 𝑐. 
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Fig. 6.  Estimations of centers of a pair of arcs (A) and a triplet of arcs 

(B). 𝐶𝑎𝑏 donates the intersection of the lines 𝑙𝑎𝑏
1
and 𝑙𝑎𝑏

2
.  𝑙𝑎𝑏

1
 , 𝑙𝑎𝑏

2
 and  

𝑙𝑏𝑐
1
, 𝑙𝑏𝑐

2
 represent the lines through the midpoints of parallel chords 

formed by the arc pairs (𝑎𝑎 , 𝑎𝑏  ) and (𝑎𝑏 , 𝑎𝑐), respectively; the black solid 

points surrounded by a yellow circle are the intersections of lines through 

the midpoints of parallel chords. 



2377-3766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2018.2836428, IEEE Robotics
and Automation Letters

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2018 

the 𝑦-coordinate of 𝑒𝑏
𝑙 must be bigger than that of 𝑒𝑐

𝑙. We 

define an eligible pair of arcs ℇ𝑎𝑏 = (𝑒𝑎, 𝑒𝑏). Thus, an eligible 

triplet is defined as two pairs sharing a common arc such as 

𝜏𝑎𝑏𝑐 = {(ℇ𝑎𝑏 , ℇ𝑐𝑑)| 𝑒𝑏 ≡ 𝑒𝑑 }.  
    Second, the locations of centers of arcs in a triplet are also 

considered as an additional constraint for selecting potential 

arcs. If the centers of arcs in a triplet rest on the same area 

within a range, it is highly likely that they fit the same ellipse. 

III. DETECTION AND VALIDATION OF ELLIPSES 

A. Determination of Ellipse Center 

   The ellipse centre for a pair of given arcs can be calculated 

by a geometric  property of ellipses: the midpoints of parallel 

chords are collinear and the intersection of lines through 

midpoints of parallel chords is the ellipse centre  [22]. We use 

the average value of all the intersections of lines through 

midpoints of parallel chords as the ellipse center. 

 We obtain two sets of chords that are parallel to the lines  

𝑒𝑎
𝑙𝑃𝑏  and 𝑒𝑏

𝑟𝑃𝑎 (𝑃𝑎 and 𝑃𝑏  being the midpoints of arcs 𝑒𝑎 and 

𝑒𝑏, respectively), as shown in Fig. 6(A). The number 𝑇𝑛 of 

parallel chords in each group is set as 16 based on our 

experiments, which are discussed later in section IV. 𝑀𝑎
𝑖 and 

𝑀𝑏
𝑖   are the midpoints of the two sets of parallel chords, 

respectively. We calculate the slopes (𝑡1, 𝑡2) of the lines 

(𝑙𝑎𝑏
1 , 𝑙𝑎𝑏

2 ) through 𝑀𝑎
𝑖 and 𝑀𝑏

𝑖 . 𝑖 = 1,2, … ,16. The intersection 

of two lines (𝑙𝑎𝑏
1 , 𝑙𝑎𝑏

2 ) is the centre (𝐶. 𝑥, 𝐶. 𝑦). Thus, the 

centre coordinates are estimated as follows,  

                       𝐶. 𝑥 =
𝑀𝑏.𝑦− 𝑡2×𝑀𝑏.𝑥−𝑀𝑎.𝑦+𝑡1×𝑀𝑎.𝑥

𝑡2−𝑡1
, 

          𝐶. 𝑦 =
𝑡1×𝑀𝑏.𝑦−𝑡2×𝑀𝑎.𝑦+𝑡1𝑡2(𝑀𝑎.𝑥−𝑀𝑏.𝑥)

𝑡2−𝑡1
.        (5) 

The average values of 16 groups of (𝑀𝑎
𝑖 , 𝑀𝑏

𝑖 ) are (𝑀𝑎, 𝑀𝑏) 

for a pair of arcs. To improve its robustness to noises, we use 

four lines through the midpoints to yield six intersections for a 

triplet of arcs in Fig. 6(B). The average values of the 

coordinates of all the intersections is adopted as the ellipse 

centre that are further used for estimating other parameters. 

We consider that a triplet of arcs 𝜏𝑎𝑏𝑐 = {(ℇ𝑎𝑏 , ℇ𝑐𝑑)| 𝑒𝑏 ≡ 𝑒𝑑} 
can consist of the same ellipse if and only if the distance of the 

centres of two pairs (𝑒𝑎, 𝑒𝑏) and (𝑒𝑐 , 𝑒𝑏) lie within a given 

threshold (𝑇𝑐) . Here we use 4 sets of parallel chords to 

calculate the elliptic centre for ℇ𝑎𝑏  and ℇ𝑐𝑑. Theoretically 

speaking, 6 sets of parallel chords are available for computing 

the ellipse centres.  In experiments, we found the methods of 

determining the centre of an ellipse with 6 and 4 sets of chords 

have almost the same effects on the detection accuracy; 

however, the method with 6 sets of chords costs more time 

than that of 4 sets of chords. This is illustrated in Table I, 

which reports experimental results.  

B. Parameter Estimations 

    In order to obtain the remaining parameters, we decompose 

the parameter space of an ellipse for the ratio 𝑁 of the ellipse 

minor semi-axes length B to major semi-axes length A and 

other defined parameter 𝐾 (𝐾 = tan 𝜌, ρ is the orientation of 

an ellipse), as described in [18, 23-25]. The equation that 

expresses 𝑁 in terms of 𝐾 is provided as  

𝑁2 = −
(𝑞1−𝐾)(𝑞2−𝐾)

(1+𝑞1𝐾)(1+𝑞2𝐾)
,                           (6)                

with 𝛼 = 𝑞1𝑞2 − 𝑞3𝑞4 and 𝛽 = 𝑞2𝑞4(𝑞3 − 𝑞1) +
𝑞1𝑞3(𝑞4 − 𝑞2) + (𝑞1 + 𝑞2 − 𝑞3 − 𝑞4).𝑞1 and 𝑞3 represent the 

slopes of the parallel chords of a triple of arcs respectively. 𝑞2 

and 𝑞4 denote the slopes of the lines fitting the midpoints of 

parallel chords. 𝑞1, 𝑞2, 𝑞3 and 𝑞4 include two slopes for each 

pair of arcs, as shown in Fig. 6(B). Thus, 

𝐾 = ±√1 −
𝛽

𝛼
.                              (7)                                                                      

For a pair of points found, the 𝑁 − 𝐾 accumulator is 

continuously updated according to Eq. (6), we can get the 

highest peaks of the values of 𝑁 and 𝜌 are in two 1D 

accumulators. Here the ellipse polar equations and coordinate 

transformation relations are applied to transforming the 

coordinate (𝑥𝑖 , 𝑦𝑖) of a point on an arc in the world coordinate 

system to the coordinate (𝑥𝑜, 𝑦𝑜) in the ellipse coordinate 

system. In the two dimensions, the coordinate transformation 

is done by the following way, 

[
𝑥𝑜
𝑦𝑜
] = [

    cos 𝜌   sin 𝜌 
− sin 𝜌   cos 𝜌

] [
𝑥𝑖 − 𝑥𝑐
𝑦𝑖 − 𝑦𝑐

].                  (8) 

According to Eq. (7-8), we obtain the following equations, 

                𝑥𝑜 =
(𝑥𝑖−𝑥𝑐)+(𝑦𝑖−𝑦𝑐)𝐾

√𝐾2+1
,𝑦𝑜 =

(𝑦𝑖−𝑦𝑐)−(𝑥𝑖−𝑥𝑐)𝐾

√𝐾2+1
.                                                                              

𝐴𝑥 is estimated as follows [23], 

𝐴𝑥 = √
𝑥𝑜
2𝑁2+𝑦𝑜

2

𝑁2(1+𝐾2)
.                                (9) 

Finally, combining 𝐴𝑥 = 𝐴 cos 𝜌 and 𝑁 =
𝐵

𝐴
 , we can identify 

an ellipse candidate with a parameter set (𝑥𝑐 , 𝑦𝑐 , 𝑁, 𝐾, 𝐴). 

C. Ellipse Validation 

The arcs that satisfy the three constraints above still may 

consist of an invalid ellipse, such as false positives or 

duplicated ones. Therefore, an ellipse validation is essential to 

discard false detections, such as false positives, by 

identification of invalid ellipses detected by our method.  

1) Validation by the ratio of the length 

    The length ratio of the sum of the long and width lengths of 

bounding box enclosing an arc to the sum of the major and 

minor semi-axes lengths (𝐴, 𝐵 respectively) can be regarded as 

a measurement of circumference, as shown in Fig. 7. Such 

scheme is less sensitive to the quantization problem in the 

pixel count feature. Assuming that an ellipse is fit by the 

triplet 𝜏123 = (𝑒1, 𝑒2, 𝑒3) enclosed by bounding boxes with the 

size of 𝑚𝑖 × 𝑛𝑖(𝑖 = 1,2,3), we define a function Κ(𝜏) as 

follows,

Bounding box 1

𝑨 

𝒆𝟏 

 
𝒎𝟏 

𝒏𝟏 
 𝑩 𝒆𝟐 

𝒆𝟑 

 

Fig. 7.  Validation by the ratio of the length is illustrated here. The 

purple frame represents the bounding box.  
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                  Κ(𝜏) =
∑ (𝑚𝑖+𝑛𝑖)
3
𝑖=1

3(𝐴+𝐵)
.                                (10)  

    A higher value of Κ(𝜏) implies a larger probability of a 

candidate ellipse being a real one. If Κ(𝜏) exceeds a threshold 

(𝑇𝑙), the ellipse candidate can be verified further by the below 

constraint, otherwise it is discarded. We define a score 

𝑠(Κ(𝜏)), which is equivalent to Κ(𝜏), to represent the 

probability of a set of arcs consisting of a real ellipse.  

2) Clustering by similarities among detected ellipses 

   Multiple candidate ellipses may be fit to the same ‘real 

ellipse’ as multiple arc sets may belong to the same ‘real 

ellipse’. In order to ensure that a “real ellipse” is just made up 

of one arc set, such candidate ellipses are clustered depending 

on the order of the scores [12]. All valid ellipses with the same 

centre are ranked according to the decreasing score 

(𝑠(Κ(𝜏))). Then we use the method proposed by Bascca et 

al.[26] to assess the similarity of two ellipses by comparing 

the differences of ellipse parameters. Specifically, a feature 

vector is defined as 𝑉(𝑥𝑐 , 𝑦𝑐 , 𝐴, 𝐵, 𝜌) where (𝑥𝑐 , 𝑦𝑐) represents 

the coordinates of an ellipse center, 𝐴 and 𝐵 denote the 

lengths of the semi-major and semi-minor axes, respectively, 

and 𝜌 is the orientation of ellipse. The Euclidean distance 

between two feature vectors is considered as the 

distinctiveness measure: 

            𝐷(𝑉,𝑊) = √∑ (𝐸𝑉,𝑖 − 𝐸𝑊,𝑖)
25

𝑖=1 ,                  (11) 

where 𝐸𝑉,𝑖 and 𝐸𝑊,𝑖 denotes the 𝑖th   parameters in the vectors 

𝑉 and 𝑊,respectively. If 𝐷(𝑉,𝑊) is less than a threshold 

(𝑇𝑠),the ellipses 𝑉 and 𝑊 are concluded to belong to the same 

ellipse cluster. Otherwise, the corresponding ellipse is 

regarded similar to the reference one and discarded. Thus, 

when an ellipse cannot be assigned to any cluster, it becomes a 

reference for a new cluster. We adopt 𝑇𝑠 = 20 given in [26]. 

IV. THRESHOLD DETERMINATION AND PERFORMANCE 

COMPARISON 

    We have used three publicly available datasets for 

evaluating the performances of the ellipse detection 

approaches, namely, Dataset Prasad[12] , Dataset #1 and 

dataset #2[18]. Dataset Prasad is composed of 198 images 

with the number of small ellipses and still available online. 

Dataset#1 consists of 400 high-definition image with a 

cylindrical object and lower-resolution images containing 

many objects with complex scenes. Dataset #2 is made up of 

several videos taken by a cell phone in scenes with many 

lighting conditions. We demonstrate the performance of our 

method, comparing against six state-of-the-art ellipse detectors 

proposed by Jia et al.[20], Fornaciari et al.[18], Prasad et 

al.[12], Mai et al.[13], Bai et al.[19], Liu et al.[27]. Source 

codes of these methods in C++ or MATLAB are available 

online. Default parameters are used for these methods. All the 

experiments are performed on a PC with 8GB RAM and an 

Intel Core i7 processor. 

A. Evaluation Metrics Regarding Algorithm Performance 

   Performance  metrics, such as F-measure and the execution 

time 𝑡 proposed in [12], are used for quantitative comparisons.  

For a detected ellipse  𝜀𝑑 and the ground-truth ellipse 𝜀𝑔, the 

overlap ratio Φ is the Jaccard index of similarity between the 

ellipses 𝜀𝑑 and 𝜀𝑔. If the overlap ratio Φ satisfies Φ > Φ0 with 

Φ0 = 0.8 for three public datasets, the detected ellipse is 

considered a correct detection, otherwise, it is counted as a 

miss. As a result, the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛   and 𝑅𝑒𝑐𝑎𝑙𝑙 values are 

computed as follows: 

                𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
Ω

Ν
,  𝑅𝑒𝑐𝑎𝑙𝑙 =

Ω

Μ
,                     (12) 

where Ω denotes the number of correctly detected ellipses, Ν 

is the number of detected ellipses, and Μ  is the number of 

 

 

 

Fig. 8.  Threshold determinations. A:(1-2), B:(1-2), C:(1-2), D:(1-2), 

E:(1-2) and F:(1-2)  represent the fluctuations of F-measure and 

consuming time with the parameters 𝑇𝑡 , 𝑇𝜃, 𝑇𝑜, 𝑇𝑛 ,  𝑇𝑐, 𝑇𝑙 changing, 

respectively. 

2 4 6 8 10 12 14 16

0.2

0.4

0.6

0.8

1

1.2

A: (1)Threshold on tolerance

Tt

F
-m

e
a
su

re

 

 

Dataset Prasad

Dataset #1

Dataset #2

2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

A: (2)Threshold on tolerance 

Tt

 E
x

e
c
u

ti
o

n
 t

im
e
 T

(m
s)

 

 

Dataset #2

Dataset #1

Dataset Prasad

5 10 15 20 25 30 35 40 45 50

0.2

0.4

0.6

0.8

1

1.2

B: (1)Threshold on angles 

T3(o)

F
-m

e
a
su

re
 

 

Dataset Prasad

Dataset #1

Dataset #2

5 10 15 20 25 30 35 40 45 50
0

50

100

150

B: (2)Threshold on angles

T3(
o)

 E
x

e
c
u

ti
o

n
 t

im
e
 T

(m
s)

 

 

Dataset #2

Dataset #1

Dataset Prasad

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

1.2

C: (1)Threshold on side ratios

TO

F
-m

e
a
su

re

 

 

Dataset Prasad

Dataset #1

Dataset #2

5 10 15 20 25 30
0

20

40

60

80

100

120

C: (2)Threshold on side ratios 

TO

 E
x

e
c
u

ti
o

n
 t

im
e
 T

(m
s)

 

 

Dataset #2

Dataset #1

Dataset Prasad

4 16 28 40 52 64

0.2

0.4

0.6

0.8

1

1.2

D: (1)Threshold on chord number 

Tn

F
-m

e
a
su

re

 

 

Dataset Prasad

Dataset #1

Dataset #2

4 16 28 40 52 64
0

50

100

150

D: (2)Threshold on chord number

Tn

 E
x

e
c
u

ti
o

n
 t

im
e
 T

(m
s)

 

 

Dataset #2

Dataset #1

Dataset Prasad

5 10 15 20 25 30 35 40 45 50

0.2

0.4

0.6

0.8

1

1.2

E: (1)Threshold on centre distances

Tc

F
-m

e
a
su

re

 

 

Dataset Prasad

Dataset #1

Dataset #2

5 10 15 20 25 30 35 40 45 50
0

50

100

150

E: (2)Threshold on centre distances

Tc

E
x

c
u

ti
o

n
 t

im
e
 t

(m
s)

 

 

Dataset #2

Dataset #1

Dataset Prasad

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

F:(1)Threshold on distance ratios 

Tl

F
-m

e
a
su

re

 

 

Dataset Prasad

Dataset #1

Dataset #2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

F: (2)Threshold on distance ratios

Tl

E
x

c
u

ti
o

n
 t

im
e
 t

(m
s)

 

 

Dataset #2

Dataset #1

Dataset Prasad



2377-3766 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2018.2836428, IEEE Robotics
and Automation Letters

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2018 

 ground-truth ellipses. Based on Eq. (10), 𝐹­measure is 

obtained as follows, 

                   𝐹­measure =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
.              (13) 

B. Threshold Determination 

   The performance of ellipse detector depends on the choices 

of threshold parameters, namely 𝑇𝑡 , 𝑇𝜃 , 𝑇𝑜, 𝑇𝑛, 𝑇𝑐 , 𝑇𝑙 . However, 

we cannot ensure suitability of a chosen threshold in all 

images for achieving the best performance of ellipse detection. 

The parameters are tested on three datasets detailed above. 

Thus, we choose a value of threshold that indicates the best 

detection performance in terms of 𝐹­𝑚𝑒𝑎𝑠𝑢𝑟𝑒 and the 

execution time (𝑡) by tuning a threshold parameter while 

fixing other threshold parameters, as done in Fig. 8. Figure 

8(A) shows the influence of 𝑇𝑡 on the performance. The 

detection effectiveness decreases with 𝑇𝑡  greater than 6. The 

consuming time increases with decreasing 𝑇𝑡.  We set 𝑇𝑡 = 6 

(𝑇𝜃 = 25𝑜, 𝑇𝑜 = 25, 𝑇𝑛 = 12, 𝑇𝑐 = 20, 𝑇𝑙 = 0.5)  as a good 

trade-off. As observed in Fig. 8(B), the best value of 𝑇𝜃  is 

35𝑜(𝑇𝑡 = 6 , 𝑇𝑜 = 25, 𝑇𝑛 = 12, 𝑇𝑐 = 20, 𝑇𝑙 = 0.5) since the 

execution time monotonically decreases with increasing 

values of 𝑇𝜃 .  The effect of 𝑇𝑜 on the effectiveness and 

execution time are shown in Fig. 8(C), where it is obvious that 

the detection effectiveness saturates while the execution time 

consistently increases when 𝑇𝑜 is larger than 20. Thus, we 

choose 20 as the value of 𝑇𝑜(𝑇𝑡 = 6, 𝑇𝜃 = 35
𝑜, 𝑇𝑛 = 12, 𝑇𝑐 =

20, 𝑇𝑙 = 0.5).  Figure 8 (D) illustrates that the parameter 𝑇𝑛 

does not need to be larger than 16 for reaching the top 

performance. The best trade-off between accuracy and speed 

is obtained with 𝑇𝑛 = 16 (𝑇𝑡 = 6, 𝑇𝜃 = 35𝑜, 𝑇𝑜 = 20, 𝑇𝑐 =
20, 𝑇𝑙 = 0.5),which allows to avoid unnecessary computation. 

As clearly illustrated in Fig. 8(E), the best values of 𝑇𝑐  are 25 

and 30 for the detection effectiveness, but the execution time 

of the value 30 is more time demanding than the value 25. We 

choose 𝑇𝑐 = 25 as a trade-off to gain good effectiveness and 

keep execution time at the minimum (𝑇𝑡 = 6, 𝑇𝜃 = 35
𝑜 , 𝑇𝑜 =

20, 𝑇𝑛 = 16, 𝑇𝑙 = 0.5). For 𝑇𝑙  larger than 0.6, there is a 

significant decline in the detection effectiveness and the 

computational time also decreases. We set 𝑇𝑙 = 0.5 (𝑇𝑡 =
6, 𝑇𝜃 = 35

𝑜 , 𝑇𝑜 = 20, 𝑇𝑛 = 16, 𝑇𝑐 = 25) because this value 

can guarantee the best effectiveness and an acceptable 

execution time compared with 𝑇𝑙 = 0.4, as shown in Fig. 8(F). 

C. Performance Evaluations 

   Our method is compared with six state-of-the-art methods 

using three public image datasets and the detection 

performances are depicted in Table I and some practical cases 

are shown in Fig. 9. For Dataset Prasad, Prasad’s detector 

outperforms all other methods for only their own dataset in 

terms of 𝐹measure (0.7548) and the proposed method is in 

the second place.  The performance of our algorithm is the 

best in Dataset #1 and Dataset #2.  Specifically, the presented 

ellipse detector is superior to these of  Fornaciari et al and Jia 

et al, especially in detecting small, occluded and over-lapping 

ellipses. Specifically, the presented ellipse detector is superior 

to these of  Fornaciari et al and Jia et al, especially in 

detecting small, occluded and over-lapping ellipses. Our 

approach requirement is around 0.1% computation time of 

Prasad’s and is third only to Fornaciari’s and Jia’s approaches 

in terms of the average detection time. The execution time of 

our detector can work in real-time video imagery for practical 

scenarios. 

TABLE I.   PERFORMANCE RESULTS FOR THREE DATASETS 

  F-measure Time(ms) Precision Recall 

D
a

ta
se

t 
P

ra
sa

d
 Mai 2008 0.2535 962.2 0.4135 0.2269 

Liu2009 0.0950 1049 0.0700 0.1505 

Bai 2009 0.2395 3470 0.2195 0.2890 

Prasad 2012 0.7428 8300 0.8512 0.6813 

Fornaciari 2014 0.3661 12.61 0.8541 0.2330 

Jia 2017 0.4332 8.42 0.7390 0.3064 

Ours 0.5173 12.96 0.6142 0.5173 

 Ours1 0.5154 20.32 0.6212 0.4404 

D
a

ta
se

t 
  
#
1

 

Mai 2008 0.2604 1979.5 0.3299 0.2463 

Liu2009 0.1170 3960 0.1248 0.1415 

Bai 2009 0.2121 136085 0.2420 0.1909 

Prasad 2012 0.4512 17130 0.4425 0.4610 

Fornaciari 2014 0.5716 16.55 0.7117 0.4777 

Jia 2017 0.5733 12.61 0.6161 0.5361 

Ours 0.6132 24.63 0.7647 0.5118 

 Ours1 0.6175 31.56 0.7583 0.5208 

D
a

ta
se

t 
 #

2
 

Mai 2008 0.1003 3520 0.1159 0.0978 

Liu2009 0.0703 9720 0.0570 0.1324 

Bai 2009 0.0370 631930 0.0249 0.1086 

Prasad 2012 0.4478 14470 0.4792 0.4750 

Fornaciari 2014 0.5880 37.725 0.5900 0.5862 

Jia 2017 0.5423 30.608 0.4846 0.6155 

Ours 0.6323 41.528 0.6547 0.6114 

 Ours1 0.6296 50.864 0.6382 0.6213 
1Note: Ours1 represents the elliptic detector with 6 sets of parallel chords 

for three combinations of pairs of arcs.  

 

 
 

Fig. 9.  Detection examples of the real images. From the first row to the 

last row, the results correspond to 1-ground truth, 2-Mai (2008), 3-

Liu(2009), 4-Bai(2009), 5-Prasad(2012), 6-Fornaciari(2014), 7-Jia(2017) 

and 8-our detector, respectively. The original images are from Dataset 

Prasad (the first two images), Dataset #1(the middle two images) and 

Dataset #2(the last two images).  The ellipse cases that cannot be detected 

are enclosed by the  red rectangular frames. 
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    Here, we discuss the aspects that give our method a 

competitive advantage over other methods. Since, we split 

curve into arcs based on the change in the arc curvatures and 

the arc convexity-concavity, our method presents a better 

performance in detecting occluded or overlapping ellipses. 

Although arc extraction and arc grouping cost additional 

computations, they are effective in reducing computations in 

the subsequent steps. Consequently, the detection process can 

be real-time.  Prasad’s detector has an apparent disadvantage 

in the execution time since they explore matching all arcs 

within the search region of an arc to form a set of arcs that 

potentially belong to the same ellipse. In this sense, it takes an 

exhaustive approach, which results in high computational 

costs and limited applicability for real-time or video rate 

ellipse detections. The approach of Fornaciari’s and Jia’s 

methods to classify arcs into quadrants by the arc convexity-

concavity based on sizes of areas is not suitable for small arcs. 

This results in poor performance of these methods in detecting 

overlapping or occluded ellipses. 

D. Limitations of the proposed detector 

    We evaluate the limitations of the proposed detector by the 

dataset [15] of synthetic images (300×300) with occluded 

ellipses and small ellipses(Fig. 10). The proposed algorithm 

imposes the constraints in the scenarios where the server 

occlusions result in the lack of visibility. We classify arcs into 

quadrants and a set of arcs consisting of an ellipse must rest on 

at least three different quadrants. Consequently, highly 

occluded ellipses and semi-ellipses cannot be detected. 

Moreover, we use parallel chords to estimate centres of 

ellipses. This is inaccurate for short arcs, leading to the 

failures of detecting the ellipses of minor axis with less than 

around 15 pixels. 

V. EXPERIMENTS IN ROBOTIC MANIPULATIONS  

    Two experiments are performed to illustrate the capabilities 

of the proposed detector for robotic manipulation of 

cylindrical object. We deploy a test platform including a 6-

DOF arm, a 2-fingered Robotiq gripper, and a Microsoft 

Kinect camera mounted on a Pan-Tilt tripod next to a table.  

A. Arranging Cylindrical Objects by Ellipse Detection 

    The first experiment is to use a robotic system to arrange 

cylindrical objects delivered by a human to a working station. 

In particular, the human puts the food cans randomly on the 

right side of a table while the robot must automatically detect 

and pick new objects and arrange them on the other end of the 

table. The proposed method is used for detecting a new 

cylindrical object and tracking the position of object till it is 

placed to the left side, as illustrated in Fig. 11. The new 

 
 

Fig. 10. The examples of detecting occluded, small, semi ellipses in 

synthetic images. 

 

Fig. 11. Arranging cans in a dynamic scenario. Place the first can (1-A, 
B, C), the second can (2-A,B,C) and the third can (3-A,B,C).   

 

 

Fig. 12.  Snapshots of dynamic detections at for the presented detector (the 1st row), Jia’s detector (the 2nd row) and Fornaciari’s detector (the 3rd row). 
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detected ellipse is depicted in green, and the color is changed 

to red when it is tracked to the other side of the table. The 

robot must also obtain 3D coordinate information to pick the 

objects. We convert the 2D pixel coordinates of the ellipse’s 

centroid by the depth information from the RGB-D camera so 

that the robotic manipulator can move to the location and 

grasp the object. The motion planning is addressed by OMPL 

[28] to grasp and to move the object to the destination and 

finally release it at a position based on a given 3D location. 

The results indicate that the ellipse detector is fast and robust 

to automate the execution, the monitoring of the workflow and 

termination of the task.  

B. Tracking Cylindrical Objects by Ellipse Detection 

 In the second experiment, we evaluate the performance of 

the presented detector in a dynamic scenario to track multiple 

cylindrical objects carried by the robotic arm at a constant 

speed. Our method is compared with two real-time detectors 

(Fornaciari 2014 and Jia 2017). The camera’s video rate is 30 

Hz. Screenshots of the captured video with ellipses detected in 

real-time by our method, Jia’s method, and Fornaciari’s 

method are shown in Fig. 12. Our ellipse detector shows the 

excellent performance in dynamic scenarios. But the other two 

detectors cannot discard false ellipses since close ellipses were 

merged together, which result in excessive detections. 

Fmeasure, Precision and Recall of our method is 0.7873, 

0.9571 and 0.6814, respectively. The detectors proposed by 

Fornaciari and Jia have worse performances with low 

Fmeasure (0.2934, 0.3130), Precision (0.3412, 0.3845) and 

Recall (0.2573, 0.2639), respectively.  

VI. CONCLUSION AND FUTURE WORK 

   In this paper, we consider the problem of detecting ellipses 

in various scenarios, especially for the robotic manipulation of 

cylindrical objects in real time. Compared with six existing 

methods, our extensive experiments demonstrate the 

significant advantages of the proposed method for detecting 

ellipses in real images with complex backgrounds by 

concerning a trade-off between the detection effectiveness and 

detection time. In our robotic experiments, the detector 

successfully tracks multiple cylindrical objects in real time 

that enables the robot to recognize and sort cylindrical objects 

from ones with different shapes in a cluttered environment by 

detecting ellipses. Future works will focus on further 

enhancements to detect even smaller ellipses, heavily 

occluded ellipses cases, and well-shaped semi-ellipses. 
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